
PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2025/26, I semester

1
cba 2025 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

62

Lecture IX: Working with abstractions

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

63

Status of the homework

accepted done

One triangle 19 10
Triangle kinds 14 5
Newton square root 10 4
Pythagorean triplets 15 7
Sonar 13 3

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

64

List slices

List slicing is a powerful feature in Python that allows you
to create a new list by extracting a portion of an existing
list.

It’s like cutting out a piece of a list you specify the
starting and ending indices (exclusive of the end index).

Syntax: mylist[start:end]

start (optional): The index where the slice begins
(inclusive). Defaults to 0.

end (optional): The index where the slice ends (exclusive).
Defaults to the end of the list.

’a’ ’b’ ’c’ ’d’ ’e’

0 1 2 3 4 mylist[1:4]

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

65

Examples

my_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Slice from index 2 to 5 (exclusive):

slice1 = my_list[2:5] # [2, 3, 4]

Slice from the beginning to index 3 (exclusive):

slice2 = my_list[:3] # [0, 1, 2]

Slice from index 6 to the end:

slice3 = my_list[6:] # [6, 7, 8, 9]

Create a copy of the entire list:

slice4 = my_list[:] # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

66

More slicing

my_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Step Size: You can add a third argument to specify a step
size (e.g., mylist[start:end:step]). my_list[1:8:2]
creates a slice starting at index 1, going up to (but not
including) index 8, with a step size of 2. [1, 3, 5, 7]

Negative Indices: Indices can be negative, counting from
the end of the list. -1 is the last element, -2 is the second
to last, etc. my_list[-3:] takes the last three elements
of the list. [7, 8, 9]; my_list[:-1] gets all elements
except the last.

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

67

A slice is always a new object

x = [100, 200, 300, 400, 500]

slice = x[1:4]

slice[0] = 666

print(f'{x=} {slice=}')

x=[100, 200, 300, 400, 500] slice=[666, 300, 400]

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

68

Procedural abstraction

Procedural abstraction is key for our thinking process
(remember the power of recursion, for example): giving a name
to a procedure/function enhances our problem solving skills.

def sum_range(a: int, b: int) -> int:
"""Sum integers from a through b.

>>> sum_range(1, 4)

10

>>> sum_range(3, 3)

3

"""

assert b >= a

result = 0

for i in range(a, b+1):

result = result + i

return result

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

69

Another “sum”

This is very similar. . .

def sum_range_cubes(a: int, b: int) -> int:
"""Sum the cubes of the integers from a through b.

>>> sum_range_cubes(1, 3)

36

>>> sum_range_cubes(-2, 2)

0

"""

assert b >= a

result = 0

for i in range(a, b+1):

result = result + cube(i) # cube(i: int) -> int

defined elsewhere↪→

return result

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

70

Another “sum”

This is also very similar. . .
1

a·(a+2) +
1

(a+4)·(a+6) +
1

(a+8)·(a+10) + · · ·+ 1
(b−2)·(b)

(Leibniz: 1
1·3 + 1

5·7 + 1
9·11 + · · · = π

8)

def pi_sum(a: int, b: int) -> float:
"""Sum 1/(a(a+2)) terms until (a+2) > b.

>>> from math import pi

>>> abs(8*pi_sum(1, 1001) - pi) < 10e-3

True

"""

assert b >= a

result = 0.0

for i in range(a, b+1, 4):

result = result + (1 / (i * (i + 2)))

return result

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

71

Can we abstract the similarity?

from collections.abc import Callable

Num = int | float

def gen_sum(a: int, b: int, fun: Callable[[int], Num], step: int = 1) -> Num:
"""Sum terms from a through b, incrementing by step.

>>> gen_sum(1, 4, lambda x: x)
10

>>> gen_sum(1, 3, lambda x: x**3)
36

>>> from math import pi
>>> abs(8*gen_sum(1, 1000, lambda x: 1 / (x * (x + 2)), 4) - pi) < 10e-3
True

"""

assert b >= a
result = 0.0
for i in range(a, b+1, step):

result = result + fun(i)
if isinstance(result, float) and result.is_integer():

return int(result)
return result

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

72

The huge value of procedural abstraction

It is worth to emphasize again the huge value brought by
procedural abstraction. In Python it is not mandatory to use
procedures/functions: the language is designed to be used also
for on the fly calculations.

x = 45
s = 0

for i in range(0, x):

s = s + i

This is ok, but it is not encapsulated
(in fact, since encapsulation is so
important you can at least consider it
encapsulated in file which contains it)

the piece of functionality is not easily to distinguish

it could be intertwined
with other unrelated
code

x = 45
a = 67 # another concern
s = 0
for i in range(0, x):

s = s + i
print(a) # another concern

the goal is not explicit, which data are needed, what
computes

it’s hard to reuse even in slightly different contexts

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

73

Encapsulate the functionality

def sum_to(x: int) -> int:
assert x >= 0

r = 0

for i in range(0, x):

r = r + i

return r

s = sum_to(45)

It gives to our mind a “piece of functionality”, the
interpreter we are programming is now “able” to do a new
thing that can be used without thinking about the
internal details

It makes clear which data it needs (an integer, ≥ 0 if we
add also an assertion or a docstring)

It makes clear that the interesting result is another integer
produced by the calculation

It can be reused easily and safely

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

74

Homework

https://classroom.github.com/a/Auwejr2m

https://classroom.github.com/a/Auwejr2m

	Abstracting similarities
	Procedural encapsulation

