Programming in Python!

Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia
mattia.monga@unimi.it

Academic year 2025/26, | semester

1@@@ 2025 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it 1

Status of the homework

accepted | done
One triangle 19 10
Triangle kinds 14 5
Newton square root 10 4
Pythagorean triplets 15 7
Sonar 13 3

63

PyQB

Monga
Abstracting
similarities

Procedural
encapsulation

Abstracting
similarities

Procedural
encapsulation

List slices

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

Lecture IX: Working with abstractions

o List slicing is a powerful feature in Python that allows you
to create a new list by extracting a portion of an existing

||St A.bs.tlra_ct.:ing

similarities

o It's like cutting out a piece of a list you specify the vt
starting and ending indices (exclusive of the end index). Sneapsuiation

o Syntax: mylist[start:end]

o start (optional): The index where the slice begins
(inclusive). Defaults to 0.

o end (optional): The index where the slice ends (exclusive).
Defaults to the end of the list.

at b e | d | e

0 1 2 3 4 pylist[1:4]

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Examples g ! More slicing

PyQB PyQB
Monga Monga

my_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] : -
v Abstracting my—llst - [O ’ 1 4 2 4 3 4 4 4 5 4 6 4 7 ’ 8 ’ 9] Abstracting

Slice from indez 2 to 5 (ezclusive): ::'C'::': o Step Size: You can add a third argument to specify a step ::'c'::':

slicel = my_liSt [2 : 5] # [2; 3, 4] encapsulation SiZe (e.g., myllst [Start :end: Step]) my_list [1 :8: 2] encapsulation
creates a slice starting at index 1, going up to (but not
Slice from the beginning to index 3 (exclusive): inchuﬁng)index 8, with a step size of 2. [1, 3, 5, 7]

slice2 = my_list[:3] # [0, 1, 2]
o Negative Indices: Indices can be negative, counting from

Slice from index 6 to the end: the end of the list. -1 is the last element, -2 is the second
slice3 = my_list[6:]1 # [6, 7, 8, 9] to last, etc. my_list[-3:] takes the last three elements

of the list. [7, 8, 9]; my_list[:-1] gets all elements
Create a copy of the entire list: except the last.

slice4 = my_list[:] # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

65 06

A slice is always a new object Procedural abstraction

PyQB Procedural abstraction is key for our thinking process
Monga (remember the power of recursion, for example): giving a name Monga

A to a procedure/function enhances our problem solving skills. .

X = [100, 200, 300, 400, 500] similarities def sum_ra_nge(a: int, b: int) -> int: similarities
Procedural mwmnn ; Procedural
slice = X[1:4:| encapsulation Sum 'Lntegers f?"O”I a through b. encapsulation
>>> 1
slice[0] = 666 sum_range(1, 4)
10
print(f'{x=} {slice=}") >5> sum_range(3, 3)

©=[100, 200, 300, 400, 500] slice=[666, 300, 400] 5""
assert b >= a
result = 0
for i in range(a, b+1):
result = result + i
return result

67 68

Another “sum” N4 Another “sum”

This is very similar. .. PyQB Thlls is also ve;y similar. . . . X PyQB
def sum_range_cubes(a: int, b: int) -> int: e 3(3+2)+_(3+4}(3+6)%_(3+8)(3+10)+_...+_(b—2)(b) Meng2
"""Sum the cubes of the integers from a through b. P — L Abetracti
dmilatics. (Lelbn|z: 1—13 + 5L7 + 9-_111 4= %) s
>>> sum_range_cubes (1, 3) Procedural Procedural
36 encapsulation def pi_sum(a: iIlt, b: int) -> float: encapsulation

"igum 1/(a(a+2)) terms until (a+2) > b.

>>> sum_range_cubes (-2, 2)

0 >>> from math tmport p<
>>> abs(8*pi_sum(1, 1001) - pi) < 10e-3
mwn True

assert b >= a

result = 0

for i in range(a, b+1):
result = result + cube(i) # cube(i: int) -> int
— defined elsewhere

return result

nnn

assert b >= a
result = 0.0
for i in range(a, b+l, 4):
result = result + (1 / (i * (i + 2)))
return result
70

09

Can we abstract the similarity? The huge value of procedural abstraction

It is worth to emphasize again the huge value brought by PyQB
from collections.abc import Callable Monga procedural abstraction. In Python it is not mandatory to use Monga
Num = int | £loat Abstracti procedures/functions: the language is designed to be used also R

racting stracting
def gen_sum(a: int, b: int, fun: Callable[[int], Num], step: int = 1) -> Num: similarities for on the fly CalCulatlonS similarities
"""Sum terms from a through b, incrementing by step.) L. L.

Procedural This is ok, but it is not encapsulated Procedural
>>> gen_sum(1, 4, lambda z: z) encapsulation X = 45 encapsulation
10 s =0 (in fact, since encapsulation is so
2> gen_sun(i, 3, lamda a: w443) for i in range(0, x): important you can at least consider it
o hrom math et g s=s+1 encapsulated in file which contains it)
5> abs(Brgen_sun(l, 1000, lambda a: 1/ (& » (= + 2)),) = pi) < 1063 o the piece of functionality is not easily to distinguish
it could be intertwined e iher coneern
assert b >= a with other unrelated oY)
result = 0.0 or i 1n+rjange(0, x):

. . s=s+i
for ;e;:lia:gié:;1:+1’fi;?g. COde print(a) # another concern
1 deinetance (result, (f1oat) and result is-integer(): o the goal is not explicit, which data are needed, what
return result Computes

o it's hard to reuse even in slightly different contexts

71 72

Encapsulate the functionality

def sum_to(x: int) -> int: PyQB
assert x >= 0
-0 Monga
for i in range(0, x): Abstracting
r=1+i similarities
return r e
s = sum_to(45)
o It gives to our mind a “piece of functionality”, the
interpreter we are programming is now “able” to do a new
thing that can be used without thinking about the
internal details
o It makes clear which data it needs (an integer, > 0 if we
add also an assertion or a docstring)
o It makes clear that the interesting result is another integer
produced by the calculation
o

It can be reused easily and safely 73

Homework

o https://classroom.github.com/a/Auwejr2m

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

74

https://classroom.github.com/a/Auwejr2m

	Abstracting similarities
	Procedural encapsulation

