Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

mattia.monga@unimi.it

Academic year 2025/26, | semester

@@@ 2025 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-<sa/4.07deed it



mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture VII: Composite objects



Simple and composite objects

@ ints floats bools are simple objects: they have no
“parts”

@ Strings are an example of composite objects since it is
possible to consider also the characters: a str is a
sequence of single characters; an important (simplifying)
property: they are immutable

@ Generic immutable sequences (with elements of any type)
are called tuples (tuple): (1, 2, 'foo') (1,)

e Generic mutable sequences (with elements of any type) are
called lists (1ist): [1, 2, 'foo'] [1]
[1,2].append(3)

u]
|
I
ul
i




Immutable objects are simpler to use:
x = (1, 2, 3)
y=x

x = (10, 20, 30) # = refers to a new object, since the
— old cannot be changed

print(x, y)

Mutable ones require some caution:
x = [1, 2, 3]

y X

x[0] = 10 # both = and y refer to a changed object
print(x, y)

x = [100, 200, 300]

print(x, y)

z = x.copy() # a copy not the same object
] = =




@ Write a function middle(L: list[int]) -> int which
takes a list L as its argument, and returns the item in the
middle position of L. (In order that the middle is
well-defined, you should assume that L has odd length.)
For example, calling middle([8, 0, 100, 12, 11)
should return 100, since it is positioned exactly in the
middle of the list.

(assert is a useful tool to check assumptions — known
as preconditions — are indeed true)

@ Define a function prod(L: list[int]) which returns the
product of the elements in a list L.



https://classroom.github.com/a/LplFuglLh
https://classroom.github.com/a/1NPDwPcc
https://classroom.github.com/a/Y5qB0vX4


https://classroom.github.com/a/Lp1FugLh
https://classroom.github.com/a/lNPDwPcc
https://classroom.github.com/a/Y5qBOvX4

	Composite objects
	Tuples and lists


