Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

mattia.monga@unimi.it

Academic year 2025/26, | semester

@@@ 2025 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-<sa/4.07deed it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture V: Algorithms with loops

Two unequal numbers be-
ing set out, and the
less being continually sub-
tracted in turn from the
greater, if the number
which is left never mea-
sures the one before it un-
til an unit is left, the orig-
inal numbers will be prime
to one another. [...]
But, if CD does not mea-
sure AB, then, the less of
the numbers AB, CD be-
ing continually subtracted
from the greater, some
number will be left which
will measure the one be-
fore it. [...]

[Euclid “Elements”, Book VII, Prop.
I 1l (c. 300 BQ)]

Two unequal numbers be-

ing set out, and the
less being continually sub-
tracted in turn from the
greater, if the number
which is left never mea-
sures the one before it un-
til an unit is left, the orig-
inal numbers will be prime
to one another. [...]
But, if CD does not mea-
sure AB, then, the less of
the numbers AB, CD be-
ing continually subtracted
from the greater, some
number will be left which
will measure the one be-
fore it. [...]

[Euclid “Elements”, Book VII, Prop.
I 1l (c. 300 BQ)]

420
240

a: int =
b: int =

tnvariant

GCD(a, b) ==

GCD(a, b) ==

while a != b:
if a > b:

a-b

Gep(la - b/, a)
Gep(la - b/, b)

a:
else:
b=>b-a

print(a)

u]
|
I
ul
i

Loops can be difficult to understand

When you have loops, understanding the code can be a difficult
task and the only general strategy is to track the execution.

This ©s known as Collatz's procedure
n= ...
while n > 1:

if n % 2 == 0:

if the remainder of division by 2 is 0, ©.e. n %S

— even
n=n/2
else:

n = 3%n + 1

We know (by empirical evidence) that it ends for all
n < 258 =~ 10?9, nobody is able to predict the number of
iterations given any n.

With loops it is also hard to exploit parallel execution.

=] =

Learn to write loops can be hard

When you write a loop, you should have in mind two related
goals:

@ the loop must terminate: this is normally easy with for
loops (when the finite collection ends, the loop ends also),
but it can be tricky with whiles (remember to change
something in the condition);

@ the loop repeats something: the programmer should be
able to write the “repeating thing” in a way that makes it
equal in its form (but probably different in what it does).

The second part (technically known as loop invariant) is the
hardest to learn, since it requires experience, creativity, and
ingenuity.

In Python3

@ Variables are names to refer to objects;

@ Objects are elements of types, which define the operations
that make sense on them;

@ Therefore, the basic instructions are the assignment (bind
a name to an object), the proper operations for each
object, and the commands to ask the services of the
operating system;

@ One can alter the otherwise strictly sequential execution of
instruction with control flow statements: if, for, while.

Remember that in python3, indentation matters (it is part of
the syntax).

Proper operations

@ On objects one can apply binary and unary operators: 2 *
3 -(-5.0) not True 'foo' + 'bar'... Funcons

@ There also built-in functions like max(8,5,6), the full list
is here: https:
//docs.python.org/3/library/functions.html

@ (syntactically, commands like print or input cannot be
distinguished from other built-in functions)

@ Every object has methods that can be applied with the so
called dot notation: (3.2).is_integer()
'foo'.upper() 'xxx'.startswith('z'); the list of
which methods an object has is given by dir(object).

u]
|
I
ul
i

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

Definition of functions

As variables are names for objects, one can also name
fragments of code:

Functions
def cube(x: int) -> int:

square = X * X

return square * x

Now we have a new operation cube, acting on ints: cube(3).
Type hints are optional (and ignored, you can call cube(3.2)
or cube('foo"')), but very useful for humans (and tools like
mypy).
Equivalent
def cube(x):

square = X * X

return square * X

u]
|
I

ul
i

Naming helps solving

Functions
The tower of Hanoi

https://www.mathsisfun.com/games/towerofhanoi.html

https://www.mathsisfun.com/games/towerofhanoi.html

Describe the moves for a solution

Recursive thinking is a powerful problem solving technique and
it can be translated to Python thanks to recursive calls.
Hanoi moves A — C:

Functions

@ In A there is just one disk: move it to C

@ Otherwise in A there are n disks (> 1):
o leap of faith! | suppose to know the moves needed to
move n — 1 disk; then

e apply this (supposed) solution to move n — 1 disks from A
to B (leveraging on C, empty, as the third pole)

@ move the last disk from A to C

o apply the (supposed) solution to move n — 1 disks from B
to C (leveraging on A, now empty, as the third pole)

This implicit description solve the problem! Finding a
non-recursive solution is possible but not that easy.

In Python

def hanoi(n: int, from_pole: str, to_pole: str, Functions
— tmp_pole: str):
if n ==

print('Move 1 disk from ' + from_pole + ' to ' +
— to_pole)

else:
hanoi(n - 1, from_pole, tmp_pole, to_pole)
hanoi(1l, from_pole, to_pole, tmp_pole)
hanoi(n - 1, tmp_pole, to_pole, from_pole)

hanoi(3, 'A', 'C', 'B")

	Functions

