Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

mattia.monga@unimi.it

Academic year 2024/25, | semester

@@@ 2024 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-<sa/4.07deed it

.0

DA

1

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture XXI: More pandas

Hao

133

Data can be grouped with groupby, then summary function
(sum, mean, ...) can be applied to each group at the same
time.

iris = pd.read_csv('https://tinyurl.com/iris-data')

iris.groupby('variety') .mean()

Groups are special lazy types which generate data only when
needed for the summary operation.

134

u]
8]
I
ul
it

Iterators

Iterators and
. . enerators
Object can be iterable. Python defines the iterator protocol as: -
@ iterator.__iter__() Return the iterator object itself.
This is required to allow both containers and iterators to
be used with the for and in statements.

@ iterator.__next__() Return the next item from the
container. If there are no further items, raise the
Stoplteration exception.

135

Notable iterators

Iterators and
generators

Built-in lists, tuples, ranges, sets, dicts are iterators
o Numpy arrays

@ Pandas Series and DataFrames

ba 136

Generators

def mygenerator() -> int:
for i in [1, 6, 70, 2]: Iterators and
yleld 1 generators
print('Ended') # Just to see when it reaches this
— point

g = mygenerator ()

print(g) # not useful

print (next(g))

print (next(g))

print (next(g))

print (next(g))

print (next(g)) # Exception

u]
8]
I
ul
it
4

hae 137

Pandas DataFrame

Be careful: the default iteration is on column names (similar to
dicts, which iterate on keys). T

generators

@ iterrows(): lterate over the rows of a DataFrame as
(index, Series) pairs. This converts the rows to Series
objects, which can change the dtypes and has some
performance implications.

@ itertuples(): lterate over the rows of a DataFrame as
namedtuples of the values. This is a lot faster than
iterrows(), and is in most cases preferable to use to
iterate over the values of a DataFrame.

Iterating is slow: whenever possibile try to use vectorized
operation or function application.

Pandas function application

Iterators and
generators

apply the function to each column
df .apply(lambda col: col.mean() + 3)

apply the function to each Tow
df .apply(lambda row: row + 3, axis=1)

u]
8]
I
ul
it
4

hace 139

Pandas query

Iterators and
df[df['A A'] > 3]

generators

equivalent to this (backticks because of the space)
df .query('"A A” > 3')

query can also refer to the index
df .query('index >= 15')

same as
df[15:]

Lecture XXII: Exception handling

Hao

141

Iterators and

generators

@ Exceptions and Errors are
object raised (or thrown)

in the middle of an

anomalous computation.

Exceptions change the

control flow: the control

passes to the “closer”
handler, if it exists:
otherwise it aborts.

BaseException

Exception

FloatingPointError

FileNotFoundError
TimeOutError

AttributeError
NotimplementedError
==

| ModuleNotFoundError I—T

—[Sysomerer]

—| TypeError

Exception handling

Exceptions can be handled: the strategy is normally an

“organized panic” in which the programmer tidies up the

environment and exits.

try:
danger () danger ()
An exception in danger except:
aborts the program

An exzception in danger
it's handled here

Exception
handling
try:

danger ()
except OverflowError as e:

An exception in danger

it's handled here

The object is referred by
— e
finally:

This is exzecuted in any
— case

143

Raising an exception

To explicitly raise an exception, use the raise statement
if something == WRONG:

Exception
handling

raise ValueError(f'The value {something} is wrong!')
Assertions are a disciplined way to raise exceptions.

144

	Iterators and generators
	Exception handling

