
PyQB

Monga

Iterators and
generators

Exception
handling

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2024/25, I semester

1
cba 2024 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Iterators and
generators

Exception
handling

133

Lecture XXI: More pandas

PyQB

Monga

Iterators and
generators

Exception
handling

134

Group by

Data can be grouped with groupby, then summary function
(sum, mean, . . .) can be applied to each group at the same
time.

iris = pd.read_csv('https://tinyurl.com/iris-data')

iris.groupby('variety').mean()

Groups are special lazy types which generate data only when
needed for the summary operation.

PyQB

Monga

Iterators and
generators

Exception
handling

135

Iterators

Object can be iterable. Python defines the iterator protocol as:

iterator.__iter__() Return the iterator object itself.
This is required to allow both containers and iterators to
be used with the for and in statements.

iterator.__next__() Return the next item from the
container. If there are no further items, raise the
StopIteration exception.

PyQB

Monga

Iterators and
generators

Exception
handling

136

Notable iterators

Built-in lists, tuples, ranges, sets, dicts are iterators.

Numpy arrays

Pandas Series and DataFrames

PyQB

Monga

Iterators and
generators

Exception
handling

137

Generators

def mygenerator() -> int:

for i in [1, 6, 70, 2]:

yield i

print('Ended') # Just to see when it reaches this

point↪→

g = mygenerator()

print(g) # not useful

print(next(g))

print(next(g))

print(next(g))

print(next(g))

print(next(g)) # Exception

PyQB

Monga

Iterators and
generators

Exception
handling

138

Pandas DataFrame

Be careful: the default iteration is on column names (similar to
dicts, which iterate on keys).

iterrows(): Iterate over the rows of a DataFrame as
(index, Series) pairs. This converts the rows to Series
objects, which can change the dtypes and has some
performance implications.

itertuples(): Iterate over the rows of a DataFrame as
namedtuples of the values. This is a lot faster than
iterrows(), and is in most cases preferable to use to
iterate over the values of a DataFrame.

Iterating is slow: whenever possibile try to use vectorized
operation or function application.

PyQB

Monga

Iterators and
generators

Exception
handling

139

Pandas function application

apply the function to each column

df.apply(lambda col: col.mean() + 3)

apply the function to each row

df.apply(lambda row: row + 3, axis=1)

PyQB

Monga

Iterators and
generators

Exception
handling

140

Pandas query

df[df['A A'] > 3]

equivalent to this (backticks because of the space)

df.query('`A A` > 3')

query can also refer to the index

df.query('index >= 15')

same as

df[15:]

PyQB

Monga

Iterators and
generators

Exception
handling

141

Lecture XXII: Exception handling

PyQB

Monga

Iterators and
generators

Exception
handling

142

Exceptions

Exceptions and Errors are
object raised (or thrown)
in the middle of an
anomalous computation.

Exceptions change the
control flow: the control
passes to the “closer”
handler, if it exists:
otherwise it aborts.

PyQB

Monga

Iterators and
generators

Exception
handling

143

Exception handling

Exceptions can be handled: the strategy is normally an
“organized panic” in which the programmer tidies up the
environment and exits.

danger()

An exception in danger

aborts the program

try:

danger()

except:

An exception in danger

it's handled here

try:

danger()

except OverflowError as e:

An exception in danger

it's handled here

The object is referred by

e↪→
finally:

This is executed in any

case↪→

PyQB

Monga

Iterators and
generators

Exception
handling

144

Raising an exception

To explicitly raise an exception, use the raise statement

if something == WRONG:

raise ValueError(f'The value {something} is wrong!')

Assertions are a disciplined way to raise exceptions.

	Iterators and generators
	Exception handling

