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Lecture XXI: More pandas
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Group by

Data can be grouped with groupby, then summary function
(sum, mean, . . . ) can be applied to each group at the same
time.

iris = pd.read_csv('https://tinyurl.com/iris-data')

iris.groupby('variety').mean()

Groups are special lazy types which generate data only when
needed for the summary operation.
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Iterators

Object can be iterable. Python defines the iterator protocol as:

iterator.__iter__() Return the iterator object itself.
This is required to allow both containers and iterators to
be used with the for and in statements.

iterator.__next__() Return the next item from the
container. If there are no further items, raise the
StopIteration exception.
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Notable iterators

Built-in lists, tuples, ranges, sets, dicts are iterators.

Numpy arrays

Pandas Series and DataFrames
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Generators

def mygenerator() -> int:

for i in [1, 6, 70, 2]:

yield i

print('Ended') # Just to see when it reaches this

point↪→

g = mygenerator()

print(g) # not useful

print(next(g))

print(next(g))

print(next(g))

print(next(g))

print(next(g)) # Exception
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Pandas DataFrame

Be careful: the default iteration is on column names (similar to
dicts, which iterate on keys).

iterrows(): Iterate over the rows of a DataFrame as
(index, Series) pairs. This converts the rows to Series
objects, which can change the dtypes and has some
performance implications.

itertuples(): Iterate over the rows of a DataFrame as
namedtuples of the values. This is a lot faster than
iterrows(), and is in most cases preferable to use to
iterate over the values of a DataFrame.

Iterating is slow: whenever possibile try to use vectorized
operation or function application.
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Pandas function application

# apply the function to each column

df.apply(lambda col: col.mean() + 3)

# apply the function to each row

df.apply(lambda row: row + 3, axis=1)
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Pandas query

df[df['A A'] > 3]

# equivalent to this (backticks because of the space)

df.query('`A A` > 3')

# query can also refer to the index

df.query('index >= 15')

# same as

df[15:]
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Lecture XXII: Exception handling
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Exceptions

Exceptions and Errors are
object raised (or thrown)
in the middle of an
anomalous computation.

Exceptions change the
control flow: the control
passes to the “closer”
handler, if it exists:
otherwise it aborts.
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Exception handling

Exceptions can be handled: the strategy is normally an
“organized panic” in which the programmer tidies up the
environment and exits.

danger()

# An exception in danger

# aborts the program

try:

danger()

except:

# An exception in danger

# it's handled here

try:

danger()

except OverflowError as e:

# An exception in danger

# it's handled here

# The object is referred by

e↪→
finally:

# This is executed in any

case↪→



PyQB

Monga

Iterators and
generators

Exception
handling

144

Raising an exception

To explicitly raise an exception, use the raise statement

if something == WRONG:

raise ValueError(f'The value {something} is wrong!')

Assertions are a disciplined way to raise exceptions.
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