
PyQB

Monga

Indexing

Vectorization

Array operations

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2024/25, I semester

1
cba 2024 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Indexing

Vectorization

Array operations

94

Lecture XV: NumPy arrays

PyQB

Monga

Indexing

Vectorization

Array operations

95

Usually the length is not changed

The best use of arrays is to avoid a change in their length, that
can be costly. Thus, they are normally preallocated at
creation:

np.array([1,2,3])

np.zeros(2), np.zeros(2, float), np.ones(2)

np.empty((2,3)) six not meaningful float values

np.arange(1, 5) be careful with floats:

>>> np.arange(0.4, 0.8, 0.1)

array([0.4, 0.5, 0.6, 0.7])

>>> np.arange(0.5, 0.8, 0.1)

array([0.5, 0.6, 0.7, 0.8])

np.linspace(0.5, 0.8, 3) with this the length is
easier to predict

You can concatenate arrays with np.concatenate (be careful
with the shapes!)

PyQB

Monga

Indexing

Vectorization

Array operations

96

Don’t remove, select

In general you don’t remove elements but select them. Be
careful: if you don’t make an explicit copy you get a “view”
and possibly side-effects.

>>> a = np.ones((2,3))

>>> a

array([[1., 1., 1.],

[1., 1., 1.]])

>>> x = a[:, 1]

>>> x

array([1., 1.])

>>> x[0] = 0

>>> x

array([0., 1.])

>>> a

array([[1., 0., 1.],

[1., 1., 1.]])

>>> x = a[:, 1].copy()

>>> x[1] = 100

>>> x

array([0., 100.])

>>> a

array([[1., 0., 1.],

[1., 1., 1.]])

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Indexing

Vectorization

Array operations

97

Indexing is powerful

Picture from “NumPy Illustrated: The Visual Guide to NumPy”, highly

recommended

PyQB

Monga

Indexing

Vectorization

Array operations

98

Indexing is powerful

Picture from “NumPy Illustrated: The Visual Guide to NumPy”, highly

recommended

PyQB

Monga

Indexing

Vectorization

Array operations

99

Warning! Assignment works differently from lists

>>> np = np.array([1,2,3,4,5])

>>> lst = [1,2,3,4,5]

>>> np[2:4] = 0

>>> np

array([1, 2, 0, 0, 5])

>>> lst[2:4] = 0 # Error!

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can only assign an iterable

>>> lst[2:4] = [0,0]

>>> lst

[1, 2, 0, 0, 5]

>>> lst[2:4] = [0,0,0]

>>> lst

[1, 2, 0, 0, 0, 5]

>>> np[2:4] = [0,0]

>>> np[2:4] = [0,0,0] # Error!

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: could not broadcast input array from shape (3,) into

shape (2,)↪→

PyQB

Monga

Indexing

Vectorization

Array operations

100

The highest power: vectorization

Most of the basic mathematical function are vectorized: no
need for loops! This is both convenient and faster!

>>> a = np.array([1,2,3,4])

>>> a + 1

array([2, 3, 4, 5])

>>> a ** 2

array([1, 4, 9, 16])

>>> np.exp(a)

array([2.71828183, 7.3890561 , 20.08553692,

54.59815003])↪→

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d
https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d

PyQB

Monga

Indexing

Vectorization

Array operations

101

Array operations

On arrays you have many “aggregate” operations.

>>> a

array([1, 2, 3, 4])

>>> a.sum()

10

>>> a.max()

4

>>> a.argmin()

0

>>> a.mean()

2.5

Remember to look at dir or the online documentation.

	Indexing
	Vectorization
	Array operations

