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Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2024/25, I semester

1
cba 2024 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Indexing

Vectorization

Array operations

94

Lecture XV: NumPy arrays

PyQB

Monga

Indexing

Vectorization

Array operations

95

Usually the length is not changed

The best use of arrays is to avoid a change in their length, that
can be costly. Thus, they are normally preallocated at
creation:

np.array([1,2,3])

np.zeros(2), np.zeros(2, float), np.ones(2)

np.empty((2,3)) six not meaningful float values

np.arange(1, 5) be careful with floats:

>>> np.arange(0.4, 0.8, 0.1)

array([0.4, 0.5, 0.6, 0.7])

>>> np.arange(0.5, 0.8, 0.1)

array([0.5, 0.6, 0.7, 0.8])

np.linspace(0.5, 0.8, 3) with this the length is
easier to predict

You can concatenate arrays with np.concatenate (be careful
with the shapes!)
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Don’t remove, select

In general you don’t remove elements but select them. Be
careful: if you don’t make an explicit copy you get a “view”
and possibly side-effects.

>>> a = np.ones((2,3))

>>> a

array([[1., 1., 1.],

[1., 1., 1.]])

>>> x = a[:, 1]

>>> x

array([1., 1.])

>>> x[0] = 0

>>> x

array([0., 1.])

>>> a

array([[1., 0., 1.],

[1., 1., 1.]])

>>> x = a[:, 1].copy()

>>> x[1] = 100

>>> x

array([ 0., 100.])

>>> a

array([[1., 0., 1.],

[1., 1., 1.]])
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Indexing is powerful

Picture from “NumPy Illustrated: The Visual Guide to NumPy”, highly

recommended
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Indexing is powerful

Picture from “NumPy Illustrated: The Visual Guide to NumPy”, highly

recommended
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Warning! Assignment works differently from lists

>>> np = np.array([1,2,3,4,5])

>>> lst = [1,2,3,4,5]

>>> np[2:4] = 0

>>> np

array([1, 2, 0, 0, 5])

>>> lst[2:4] = 0 # Error!

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can only assign an iterable

>>> lst[2:4] = [0,0]

>>> lst

[1, 2, 0, 0, 5]

>>> lst[2:4] = [0,0,0]

>>> lst

[1, 2, 0, 0, 0, 5]

>>> np[2:4] = [0,0]

>>> np[2:4] = [0,0,0] # Error!

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: could not broadcast input array from shape (3,) into

shape (2,)↪→
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The highest power: vectorization

Most of the basic mathematical function are vectorized: no
need for loops! This is both convenient and faster!

>>> a = np.array([1,2,3,4])

>>> a + 1

array([2, 3, 4, 5])

>>> a ** 2

array([ 1, 4, 9, 16])

>>> np.exp(a)

array([ 2.71828183, 7.3890561 , 20.08553692,

54.59815003])↪→

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d
https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d
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Array operations

On arrays you have many “aggregate” operations.

>>> a

array([1, 2, 3, 4])

>>> a.sum()

10

>>> a.max()

4

>>> a.argmin()

0

>>> a.mean()

2.5

Remember to look at dir or the online documentation.
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