
PyQB

Monga

Random
numbers

Monte Carlo

Simulations

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2024/25, I semester

1
cba 2024 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Random
numbers

Monte Carlo

Simulations

74

Lecture XII: Random numbers

PyQB

Monga

Random
numbers

Monte Carlo

Simulations

75

Random numbers

Pseudorandomness: the sequence of numbers is not
predictable. . .

from random import randint

To get a random integer x in the set [1..10]

x = randint(1, 10)

from random import randint

for _ in range(0,10):

print(randint(1, 100))

unless you know the seed.

from random import seed, randint

seed(292)

for _ in range(0,10):

print(randint(1, 100))

PyQB

Monga

Random
numbers

Monte Carlo

Simulations

76

Exercise

Write a Python program which chooses an integer 1–10 and
asks to the user to guess it

if the number given by the user is not 1–10, it prints
“Invalid”;

if the number is the chosen one, it prints “Yes!”;

otherwise “You didn’t guess it...”.

PyQB

Monga

Random
numbers

Monte Carlo

Simulations

76

Exercise

Write a Python program which chooses an integer 1–10 and
asks to the user to guess it

if the number given by the user is not 1–10, it prints
“Invalid”;

if the number is the chosen one, it prints “Yes!”;

otherwise “You didn’t guess it...”.

Evolve the program: it should now ask until the user guess the
number correctly, giving hints (“higher...”, “lower...”).

PyQB

Monga

Random
numbers

Monte Carlo

Simulations

76

Exercise

Write a Python program which chooses an integer 1–10 and
asks to the user to guess it

if the number given by the user is not 1–10, it prints
“Invalid”;

if the number is the chosen one, it prints “Yes!”;

otherwise “You didn’t guess it...”.

Evolve the program: it should now ask until the user guess the
number correctly, giving hints (“higher...”, “lower...”).
How many tries in the worst case? Can you write a program
guessing a number between 1 and int(1e32)

PyQB

Monga

Random
numbers

Monte Carlo

Simulations

77

Example

0 1

1

Blue square: 1

Green area: π
4

The Monte Carlo method consists of choosing sample
experiments at random from a large set and then making
deductions on the basis of the probabilities estimated from
frequency of occurrences.

PyQB

Monga

Random
numbers

Monte Carlo

Simulations

78

Example

from random import random

def approx_pi(tries: int) -> float:

"""Return an approximation for pi.

>>> from math import pi

>>> from random import seed

>>> seed(7897) # Tests should be reproducible

>>> abs(4*approx_pi(1000) - pi) < 10e-2

True

>>> abs(4*approx_pi(100000) - pi) < abs(approx_pi(1000) - pi)

True

"""

assert tries > 0

within_circle = 0

for i in range (0, tries):

x = random() # range [0,1)

y = random()

if x**2 + y**2 < 1:

within_circle += 1

return within_circle / tries

PyQB

Monga

Random
numbers

Monte Carlo

Simulations

79

Example

It’s easy to extend to make this work for any function on [0, 1).
from random import random

from collections.abc import Callable

def approx_fun(predicate: Callable[[float, float], bool], tries:

int) -> float:↪→
"""Return an approximation for pi.

>>> from math import pi

>>> from random import seed

>>> seed(7897) # Tests should be reproducible

>>> within_circle = lambda x, y: x**2 + y**2 < 1

>>> abs(4*approx_fun(within_circle, 1000) - pi) < 10e-2

True

"""

assert tries > 0

true_cases = 0

for i in range (0, tries):

x = random() # range [0,1)

y = random()

if predicate(x, y):

true_cases += 1

return true_cases / tries

PyQB

Monga

Random
numbers

Monte Carlo

Simulations

80

Simulations

Random number are useful also for simulation: for example, we
could simulate evolutionary drift.
from random import seed, randint, getstate, setstate

class DriftSimulation:

def __init__(self, sim_seed: int = 232943) -> None:

self.population = ['\N{MONKEY}', '\N{TIGER}', '\N{BUTTERFLY}', '\N{LIZARD}',

'\N{SNAIL}']↪→
seed(sim_seed)

self.r_state = getstate()

def offspring(self) -> None:

setstate(self.r_state)

new = self.population[randint(0, len(self.population)-1)]

self.population[randint(0, len(self.population)-1)] = new

self.r_state = getstate()

def simulate(self, generations: int) -> None:

for i in range(0, generations):

self.offspring()

a = DriftSimulation()

b = DriftSimulation()

a.simulate(2)

b.simulate(2)

	Random numbers
	Monte Carlo
	Simulations

