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Lecture XII: Random numbers
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Random numbers

Pseudorandomness: the sequence of numbers is not
predictable. . .

from random import randint

# To get a random integer x in the set [1..10]

x = randint(1, 10)

from random import randint

for _ in range(0,10):

print(randint(1, 100))

unless you know the seed.

from random import seed, randint

seed(292)

for _ in range(0,10):

print(randint(1, 100))
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Exercise

Write a Python program which chooses an integer 1–10 and
asks to the user to guess it

if the number given by the user is not 1–10, it prints
“Invalid”;

if the number is the chosen one, it prints “Yes!”;

otherwise “You didn’t guess it...”.
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Exercise

Write a Python program which chooses an integer 1–10 and
asks to the user to guess it

if the number given by the user is not 1–10, it prints
“Invalid”;

if the number is the chosen one, it prints “Yes!”;

otherwise “You didn’t guess it...”.

Evolve the program: it should now ask until the user guess the
number correctly, giving hints (“higher...”, “lower...”).
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Exercise

Write a Python program which chooses an integer 1–10 and
asks to the user to guess it

if the number given by the user is not 1–10, it prints
“Invalid”;

if the number is the chosen one, it prints “Yes!”;

otherwise “You didn’t guess it...”.

Evolve the program: it should now ask until the user guess the
number correctly, giving hints (“higher...”, “lower...”).
How many tries in the worst case? Can you write a program
guessing a number between 1 and int(1e32)
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Example

0 1

1

Blue square: 1

Green area: π
4

The Monte Carlo method consists of choosing sample
experiments at random from a large set and then making
deductions on the basis of the probabilities estimated from
frequency of occurrences.
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Example

from random import random

def approx_pi(tries: int) -> float:

"""Return an approximation for pi.

>>> from math import pi

>>> from random import seed

>>> seed(7897) # Tests should be reproducible

>>> abs(4*approx_pi(1000) - pi) < 10e-2

True

>>> abs(4*approx_pi(100000) - pi) < abs(approx_pi(1000) - pi)

True

"""

assert tries > 0

within_circle = 0

for i in range (0, tries):

x = random() # range [0,1)

y = random()

if x**2 + y**2 < 1:

within_circle += 1

return within_circle / tries
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Example

It’s easy to extend to make this work for any function on [0, 1).
from random import random

from collections.abc import Callable

def approx_fun(predicate: Callable[[float, float], bool], tries:

int) -> float:↪→
"""Return an approximation for pi.

>>> from math import pi

>>> from random import seed

>>> seed(7897) # Tests should be reproducible

>>> within_circle = lambda x, y: x**2 + y**2 < 1

>>> abs(4*approx_fun(within_circle, 1000) - pi) < 10e-2

True

"""

assert tries > 0

true_cases = 0

for i in range (0, tries):

x = random() # range [0,1)

y = random()

if predicate(x, y):

true_cases += 1

return true_cases / tries
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Simulations

Random number are useful also for simulation: for example, we
could simulate evolutionary drift.
from random import seed, randint, getstate, setstate

class DriftSimulation:

def __init__(self, sim_seed: int = 232943) -> None:

self.population = ['\N{MONKEY}', '\N{TIGER}', '\N{BUTTERFLY}', '\N{LIZARD}',

'\N{SNAIL}']↪→
seed(sim_seed)

self.r_state = getstate()

def offspring(self) -> None:

setstate(self.r_state)

new = self.population[randint(0, len(self.population)-1)]

self.population[randint(0, len(self.population)-1)] = new

self.r_state = getstate()

def simulate(self, generations: int) -> None:

for i in range(0, generations):

self.offspring()

a = DriftSimulation()

b = DriftSimulation()

a.simulate(2)

b.simulate(2)
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