Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

mattia.monga@unimi.it

Academic year 2024/25, | semester

@@@ 2024 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-<sa/4.07deed it

.0

DA

1

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture XlII: Random numbers

Random numbers

Pseudorandomness: the sequence of numbers is not
predictable. ..

from random import randint Random

numbers

To get a random integer z in the set [1..10]
x = randint (1, 10)

from random import randint

for _ in range(0,10):
print(randint (1, 100))

unless you know the seed.

from random import seed, randint

seed(292)
for _ in range(0,10):
print (randint (1, 100))

u]
|
I
ul
i

Exercise

Write a Python program which chooses an integer 1-10 and
asks to the user to guess it
“Invalid”;

@ if the number given by the user is not 1-10, it prints

@ if the number is the chosen one, it prints “Yes!”
@ otherwise “You didn’t guess it...".

Random

numbers

Exercise

“Invalid”;

Write a Python program which chooses an integer 1-10 and
asks to the user to guess it
@ if the number given by the user is not 1-10, it prints

Random

numbers

@ if the number is the chosen one, it prints “Yes!";
@ otherwise “You didn't guess it...".

1

Evolve the program: it should now ask until the user guess the
number correctly, giving hints (“higher...’

, “lower...")

Exercise

Write a Python program which chooses an integer 1-10 and Random
asks to the user to guess it numbers

@ if the number given by the user is not 1-10, it prints
“Invalid”;

@ if the number is the chosen one, it prints “Yes!”;

@ otherwise “You didn't guess it...".

Evolve the program: it should now ask until the user guess the
number correctly, giving hints (“higher...”, “lower...").

How many tries in the worst case? Can you write a program
guessing a number between 1 and int(1e32)

Example

@ Blue square: 1

@ Green area: %

0 1
The Monte Carlo method consists of choosing sample
experiments at random from a large set and then making

deductions on the basis of the probabilities estimated from
frequency of occurrences.

Monte Carlo

Example

from random import random

def approx_pi(tries: int) -> float:
"""Return an approzimation for pu.

>>> from math import pi

>>> from random import seed

>>> seed(7897) # Tests should be reproducible
>>> abs (4*approz_pi (1000) - pi) < 10e-2

True

Monte Carlo

>>> abs (4*approx_pi(100000) - pi) < abs(approx_pi(1000) - pi)
True
mmnn
assert tries > 0O
within_circle = 0
for i in range (0, tries):
x = random() # range [0,1)
y = random()
if xk*k2 + yx*x2 < 1:
within_circle += 1
return within_circle / tries

u]
|
I
ul
i

Example

It's easy to extend to make this work for any function on [0, 1).
from random import random
from collections.abc import Callable

def approx_fun(predicate: Callable[[float, float], booll, tries:
< int) -> float:
"""Return an approzimation for pu.

>>> from math import pi
>>> from random import seed
>>> seed(7897) # Tests should be reproducible
>>> within_circle = lambda T, y: T**2 + y**2 < 1
>>> abs (4*approz_fun(within_circle, 1000) - pi) < 10e-2
True
mimmn
assert tries > O
true_cases = 0
for i in range (0, tries):

x = random() # range [0,1)
random()

if predicate(x, y):

true_cases += 1

return true_cases / tries o

|
I
ul
i

Monte Carlo

Simulations

Random number are useful also for simulation: for example, we
could simulate evolutionary drift.

from random import seed, randint, getstate, setstate

class DriftSimulation:
def __init__(self, sim_seed: int = 232943) -> None:
self.population = ['\N{MONKEY}', '\N{TIGER}', '\N{BUTTERFLY}', '\N{LIZARD}', Simulations
< "\N{SNAIL}']
seed(sim_seed)
self.r_state = getstate()

def offspring(self) -> None:
setstate(self.r_state)
new = self.population[randint(0, len(self.population)-1)]
self.population[randint (0, len(self.population)-1)] = new
self.r_state = getstate()

def simulate(self, generations: int) -> None:
for i in range(0, generations):
self.offspring()

a = DriftSimulation()
b = DriftSimulation()
a.simulate(2)
b.simulate(2)

u]
|
I
ul
i

	Random numbers
	Monte Carlo
	Simulations

