
PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2024/25, I semester

1
cba 2024 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

60

Lecture IX: Encapsulation

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

61

State of the homework

Students Solved by
One Triangle 20 8
Pythagorean Triplets 15 6
Sonar 9 4
Newton sqrt 5 1
Triangle kinds 5 5
Count chars 5 4

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

62

Procedural abstraction

Procedural abstraction is key for our thinking process
(remember the power of recursion, for example): giving a name
to a procedure/function enhances our problem solving skills.

def sum_range(a: int, b: int) -> int:

"""Sum integers from a through b.

>>> sum_range(1, 4)

10

>>> sum_range(3, 3)

3

"""

assert b >= a

result = 0

for i in range(a, b+1):

result = result + i

return result

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

63

Another “sum”

This is very similar. . .

def sum_range_cubes(a: int, b: int) -> int:

"""Sum the cubes of the integers from a through b.

>>> sum_range_cubes(1, 3)

36

>>> sum_range_cubes(-2, 2)

0

"""

assert b >= a

result = 0

for i in range(a, b+1):

result = result + cube(i) # cube(i: int) -> int

defined elsewhere↪→

return result

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

64

Another “sum”

This is also very similar. . .
1

a·(a+2) +
1

(a+4)·(a+6) +
1

(a+8)·(a+10) + · · ·+ 1
(b−2)·(b)

(Leibniz: 1
1·3 + 1

5·7 + 1
9·11 + · · · = π

8)

def pi_sum(a: int, b: int) -> float:

"""Sum 1/(a(a+2)) terms until (a+2) > b.

>>> from math import pi

>>> abs(8*pi_sum(1, 1001) - pi) < 10e-3

True

"""

assert b >= a

result = 0.0

for i in range(a, b+1, 4):

result = result + (1 / (i * (i + 2)))

return result

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

65

Can we abstract the similarity?

from collections.abc import Callable

Num = int | float

def gen_sum(a: int, b: int, fun: Callable[[int], Num], step: int = 1) -> Num:

"""Sum terms from a through b, incrementing by step.

>>> gen_sum(1, 4, lambda x: x)

10

>>> gen_sum(1, 3, lambda x: x**3)

36

>>> from math import pi

>>> abs(8*gen_sum(1, 1000, lambda x: 1 / (x * (x + 2)), 4) - pi) < 10e-3

True

"""

assert b >= a

result = 0.0

for i in range(a, b+1, step):

result = result + fun(i)

if isinstance(result, float) and result.is_integer():

return int(result)

return result

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

66

The huge value of procedural abstraction

It is worth to emphasize again the huge value brought by
procedural abstraction. In Python it is not mandatory to use
procedures/functions: the language is designed to be used also
for on the fly calculations.

x = 45

s = 0

for i in range(0, x):

s = s + i

This is ok, but it is not encapsulated
(in fact, since encapsulation is so
important you can at least consider it
encapsulated in file which contains it)

the piece of functionality is not easily to distinguish

it could be intertwined
with other unrelated
code

x = 45

a = 67 # another concern

s = 0

for i in range(0, x):

s = s + i

print(a) # another concern

the goal is not explicit, which data are needed, what
computes

it’s hard to reuse even in slightly different contexts

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

67

Encapsulate the functionality

def sum_to(x: int) -> int:

assert x >= 0

r = 0

for i in range(0, x):

r = r + i

return r

s = sum_to(45)

It gives to our mind a “piece of functionality”, the
interpreter we are programming is now “able” to do a new
thing that can be used without thinking about the
internal details
It makes clear which data it needs (an integer, ≥ 0 if we
add also an assertion or a docstring)
It makes clear that the interesting result is another integer
produced by the calculation
It can be reused easily and safely

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

68

Lecture X: OOP

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

69

Object Oriented encapsulation

Encapsulation is so important that it is used also at a higher
level: a collection of related procedures.

x = 666

def increment():

x = x + 1

def decrement():

x = x - 1

Again: this is correct Python code, but it has problems:

Both the functions depends on x but this is not clear from
their signature: a user must look at the internal details

The two functions cannot be reused individually, but only
together with the other (and x)

PyQB

Monga

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

70

Classes

A class is a way to package together a collection of related
functions. The class is a “mold” to instance new objects that
encapsulated the related functionalities.

class Counter:

def __init__(self, start: int):

self.x = start

def increment(self):

self.x = self.x + 1

def decrement(self):

self.x = self.x - 1

c = Counter(666)

c.decrement()

d = Counter(999)

d.increment()

	Abstracting similarities
	Procedural encapsulation
	OO encapsulation

