Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

mattia.monga@unimi.it

Academic year 2024/25, | semester

@@@ 2024 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-<sa/4.07deed it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture VIII: Files

Make a program readable

You never write a program only for a machine! You, others, Types,
tools will read the program for different purposes. Every e
minute spent in making a program more understandable pays

off hours saved later.

@ Type hinting makes clear what a function needs to work
properly, and what it produces

@ Documentation helps understanding without the need to
read implementation details

@ Examples of use make easy to remember how to use a
function and can be used for verification

Example

Num = int | float

Types,
def cube(x: Num) -> Num: docstrings,

doctests
"""Return the cube of x.

>>> cube(-3)
=27

>>> abs(cube(0.2) - 0.008) < 10e-5
True

mnn
return x * X * X

Examples can be tested by:
python -m doctest filename.py.

u]
|
I

ul
i

A file is an abstraction the operating system uses to preserve
data among the execution of programs. Data must be accessed
sequentially. (ltalian reading people might enjoy this)
@ We need commands to ask to the OS to give access to a
file (open).

@ It is easy to read or write data sequentially, otherwise you
need special commands (seek) to move the file “cursor”

@ The number of open files is limited (= thousands), thus it
is better to close files when they are not in use

Files contain bits (normally considered by group of bytes, 8
bits), the interpretation (“format”) is given by the programs
which manipulate them. However, “lines of printable
characters” (plain text) is a rather universal/predefined
interpretation, normally the easiest to program.

https://mondodigitale.aicanet.net/2022-1/articoli/MD94_02_L_importanza_di_chiamarlo_file_Monga.pdf

File read access

f = open('filename.txt', 'r') # read only

iterating on a file reads (all) the lines
for i in f:

print (i)
End of file already reached, result is '’
f.readline()

f.close()

File closed, error!
f.readline()
To avoid remembering to close explicitly, Python provides the
context manager syntax.
with open('filename.txt', 'r') as f:
for i in f:
print (i) Or <> <=

Files

	Types, docstrings, doctests
	Files

