
PyQB

Monga

Functions

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2024/25, I semester

1
cba 2024 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Functions

27

Lecture IV: Algorithms with loops

PyQB

Monga

Functions

28

Euclid’s GCD

Two unequal numbers being set
out, and the less being continu-
ally subtracted in turn from the
greater, if the number which is left
never measures the one before it
until an unit is left, the original
numbers will be prime to one an-
other. [. . .] But, if CD does not
measure AB, then, the less of the
numbers AB, CD being continually
subtracted from the greater, some
number will be left which will mea-
sure the one before it. [. . .]

[Euclid “Elements”, Book VII, Prop. I, II
(c. 300 BC)]

a: int = 420

b: int = 240

while a != b:

if a > b:

a = a - b

else:

b = b - a

print(a)

PyQB

Monga

Functions

29

Loops can be difficult to understand

When you have loops, understanding the code can be a difficult
task and the only general strategy is to track the execution.

This is known as Collatz's procedure

n = ...

while n > 1:

if n % 2 == 0:

if the remainder of division by 2 is 0, i.e. n is

even↪→

n = n / 2

else:

n = 3*n + 1

We know (by empirical evidence) that it ends for all
n < 268 ≈ 1020, nobody is able to predict the number of
iterations given any n.
With loops it is also hard to exploit parallel execution.

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Functions

30

Learn to write loops can be hard

When you write a loop, you should have in mind two related
goals:

1 the loop must terminate: this is normally easy with for

loops (when the finite collection ends, the loop ends also),
but it can be tricky with whiles (remember to change
something in the condition);

2 the loop repeats something: the programmer should be
able to write the “repeating thing” in a way that makes it
equal in its form (but probably different in what it does).

The second part (technically known as loop invariant) is the
hardest to learn, since it requires experience, creativity, and
ingenuity.

PyQB

Monga

Functions

31

Summary

In Python3

Variables are names to refer to objects;

Objects are elements of types, which define the operations
that make sense on them;

Therefore, the basic instructions are the assignment (bind
a name to an object), the proper operations for each
object, and the commands to ask the services of the
operating system;

One can alter the otherwise strictly sequential execution of
instruction with control flow statements: if, for, while.

Remember that in python3, indentation matters (it is part of
the syntax).

PyQB

Monga

Functions

32

Proper operations

On objects one can apply binary and unary operators: 2 *

3 -(-5.0) not True 'foo' + 'bar'. . .

There also built-in functions like max(8,5,6), the full list
is here: https:
//docs.python.org/3/library/functions.html

(syntactically, commands like print or input cannot be
distinguished from other built-in functions)

Every object has methods that can be applied with the so
called dot notation: (3.2).is_integer()
'foo'.upper() 'xxx'.startswith('z'); the list of
which methods an object has is given by dir(object).

PyQB

Monga

Functions

33

Definition of functions

As variables are names for objects, one can also name
fragments of code:

def cube(x: int) -> int:

square = x * x

return square * x

Now we have a new operation cube, acting on ints: cube(3).
Type hints are optional (and ignored, you can call cube(3.2)
or cube('foo')), but very useful for humans (and tools like
mypy).

Equivalent

def cube(x):

square = x * x

return square * x

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

PyQB

Monga

Functions

34

Naming helps solving

The tower of Hanoi
https://www.mathsisfun.com/games/towerofhanoi.html

PyQB

Monga

Functions

35

Describe the moves for a solution

Recursive thinking is a powerful problem solving technique and
it can be translated to Python thanks to recursive calls.
Hanoi moves A → C :

In A there is just one disk: move it to C

Otherwise in A there are n disks (> 1):
leap of faith! I suppose to know the moves needed to
move n − 1 disk; then

apply this (supposed) solution to move n− 1 disks from A
to B (leveraging on C , empty, as the third pole)
move the last disk from A to C
apply the (supposed) solution to move n− 1 disks from B
to C (leveraging on A, now empty, as the third pole)

This implicit description solve the problem! Finding a
non-recursive solution is possible but not that easy.

PyQB

Monga

Functions

36

In Python

def hanoi(n: int, a_from: str, c_to: str,

b_intermediate: str):↪→

if n == 1:

print('Move 1 disk from ' + a_from + ' to ' + c_to)

else:

hanoi(n - 1, a_from, b_intermediate, c_to)

print('Move 1 disk from ' + a_from + ' to ' + c_to)

hanoi(n - 1, b_intermediate, c_to, a_from)

hanoi(3, 'A', 'C', 'B')

https://www.mathsisfun.com/games/towerofhanoi.html

	Functions

