

Programming in Python¹

Mattia Monga

Dip. di Informatica Università degli Studi di Milano, Italia mattia.monga@unimi.it

Academic year 2023/24, I semester

Vlonga

Monte-Carlo

PyQB

^{1 ⊕ ⊕ ⊕ 2023} M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0 Internazionale. http://creativecommons.org/licenses/by-sa/4-0fdeed∢it → ⟨ € → € ✓ ९ ○ 1

PyQB

Monga

Py Tensor Monte-Carlo

Lecture XXVI: Behind pymc

Behind PyMC

PyQB

Monga

Py Tensor Monte-Carlo

The probabilistic programming approach of PyMC is built on two "technologies":

- A library that mixes numerical and symbolic computations (Theano, Aesara, currently a new implementation called PyTensor)
- Markov Chain Monte-Carlo (MCMC) algorithms to estimate posterior densities

PyTensor

It bounds numerical computations to its symbolic structure ("graph")

```
import aesara as at
```

```
a = at.tensor.dscalar()
b = at.tensor.dscalar()
c = a + b**2
f = at.function([a,b], c)
assert f(1.5, 2) == 5.5
```

Monga

PyTensor

Symbolic manipulations

Variables can be used to compute values, but also symbolic manipulations.

```
f_prime = at.function([a, b], d)
```

```
assert f_prime(1.5, 2) == 4.
```

d = at.tensor.grad(c, b)

Note you still need to give an a because the symbolic structure needs it.

PyQB

Monga

PyTensor Monte-Carlo

Markov Chain Monte-Carlo

PyQB

Monga

Py Tensor

Monte-Carlo

It's way of estimating (relative) populations of "contiguous" states.

- It needs the capacity of evaluate the population/magnitude of any two close states (but a global knowledge of all the states at the same time)
- It's useful to estimate *posterior* distribution *without* explicitly computing P(D): $P(M|D) = \frac{P(D|M) \cdot P(M)}{P(D)}$

Metropolis

The easiest MCMC approach is the so-called Metropolis algorithm (in fact appeared as Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E., 1953)

```
steps = 100000
positions = np.zeros(steps)
populations = [1,2,3,4,5,6,7.8,9.10]
current = 3
for i in range(steps):
    positions[i] = current
    proposal = (current + np.random.choice([-1,1])) %
    → len(populations)
    prob_move = populations[proposal] /
    → populations[current]
    if np.random.uniform(0, 1) < prob_move:</pre>
        current = proposal
```

PyQB

Monga

PyTensor

Monte-Carlo

Convergence

Руцв

Monga

Monte-Carlo

Eventual convergence is guaranteed, but it can be painful slow (and you dont't know if you are there...). Many algorithms try to improve: Gibbs, Hamiltonian-MC, NUTS...

Putting them together


```
import pymc as pm
linear_regression = pm.Model()
with linear_regression:
    # PyTensor variables
    sigma = pm.Uniform('sigma_h', 0, 50)
    alpha = pm.Normal('alpha', 178, 20)
    beta = pm.Normal('beta', 0, 10)
    mu = alpha + beta*(adult_males['weight'] -
    → adult_males['weight'].mean())
    # Observed.
    h = pm.Normal('height', mu, sigma,
    → observed=adult_males['height'])
    trace = pm.sample() # MCMC sampling
```

PyQB

Monga

Monte-Carlo