Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

mattia.monga@unimi.it

Academic year 2023/24, | semester

@@@ 2023 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-<sa/4.07deed it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture XXVI: Behind pymc

- =, <=, = wac 159

Behind PyMC

The probabilistic programming approach of PyMC is built on
two “technologies”:

O A library that mixes numerical and symbolic computations
(Theano, Aesara, currently a new implementation called
PyTensor)

@ Markov Chain Monte-Carlo (MCMC) algorithms to
estimate posterior densities

- 160

Py Tensor

It bounds numerical computations to its symbolic structure
(“graph”) PyTensor

import aesara as at

a = at.tensor.dscalar()

b = at.tensor.dscalar()
c = a + bxx2
f = at.function([a,b], c)

assert f(1.5, 2) == 5.5

161

u]
8]
I
ul
it

Symbolic manipulations

Variables can be used to compute values, but also symbolic
manipulations.

d = at.tensor.grad(c, b)
f_prime = at.function([a, bl, d)

assert f_prime(1.5, 2) ==

Note you still need to give an a because the symbolic structure
needs it.

u]
8]
I
ul
it

162

PyTensor

Markov Chain Monte-Carlo

It's way of estimating (relative) populations of “contiguous” Monte-Carlo
states.

@ It needs the capacity of evaluate the
population/magnitude of any two close states (but a
global knowledge of all the states at the same time)

@ It's useful to estimate posterior distribution without

explicitly computing P(D): P(M|D) = M

- 163

Metropolis

The easiest MCMC approach is the so-called Metropolis
algorithm (in fact appeared as Metropolis, N., Rosenbluth,
A., Rosenbluth, M., Teller, A., and Teller, E., 1953)
steps = 100000

positions = np.zeros(steps)

populations = [1,2,3,4,5,6,7,8,9,10]

current = 3

Monte-Carlo

for i in range(steps):
positions[i] = current
proposal = (current + np.random.choice([-1,1])) %
— len(populations)
prob_move = populations[proposal] /
— populations[current]
if np.random.uniform(0, 1) < prob_move:
current = proposal

Convergence

Last 300 moves

‘h N”Wl“ﬂ“ l i

Density of state

Monte-Carlo

Eventual convergence is guaranteed, but it can be painful slow
(and you dont't know if you are there...).
to improve: Gibbs, Hamiltonian-MC, NUTS

). Many algorithms try

pac 165

Putting them together

import pymc as pm

linear_regression = pm.Model()
Monte-Carlo

with linear_regression:

PyTensor wvariables

sigma = pm.Uniform('sigma_h', 0, 50)

alpha = pm.Normal('alpha', 178, 20)

beta = pm.Normal('beta', 0, 10)

mu = alpha + beta*(adult_males['weight'] -

— adult_males['weight'] .mean())

Observed!

h = pm.Normal('height', mu, signma,

— observed=adult_males['height'])

trace = pm.sample() # MCMC sampling

] = =

166

	PyTensor
	Monte-Carlo

