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Lecture XXI: Tabular data
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Tabular data

Data are often given/collected as tables: matrices with rows for
individual records and columns for the fields of the records.
This is especially common in statistics, R has a built-in type for
this: the dataframe.
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pandas

pandas (Python for data analysis) brings the DataFrame type
to Python. It is based on numpy.

Series: a one-dimensional labeled array capable of
holding any data type (integers, strings, floating point
numbers, Python objects, etc.). The axis labels are
collectively referred to as the index.

DataFrame: a 2-dimensional labeled data structure with
columns of potentially different types. You can think of it
like a spreadsheet, or a dict of Series objects.
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Series

import pandas as pd

s = pd.Series(np.random.randn(5), index=["a", "b", "c",

"d", "e"])↪→

s is a numpy array of floats, each one has a label.

d = {"b": 1, "a": 0, "c": 2}

s = pd.Series(d)

The ordering depends on Python and pandas version. . . The
current ones takes the insertion order, but you can provide
explicitly the index.

d = {"b": 1, "a": 0, "c": 2}

s = pd.Series(d, index=['a', 'b', 'c'])
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Series

A Series is convenient because it is a ndarray (and can be
vectorized) but also a dict.
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Dataframes

d = { "one": pd.Series([1.0, 2.0, 3.0], index=["a",

"b", "c"]),↪→

"two": pd.Series([1.0, 2.0, 3.0, 4.0],

index=["a", "b", "c", "d"]),↪→

}

df = pd.DataFrame(d)

A DataFrame has an index and a columns attribute.
There are many ways of creating DataFrames, see the docs.
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From csv or spreadsheets

A famous example: Fisher’s Iris flowers dataset.
150 records, "sepal length","sepal width","petal

length","petal width","class"

iris = pd.read_csv('iris.csv')

# with a url

iris = pd.read_csv('https://tinyurl.com/iris-data')
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Two ways of indexing

.loc[] “label based”

.iloc[] “position based”

For both you can use: a single value, a list of values, a boolean
array. Two notable things:

1 If you use a slice notation with .loc ('a':'f') the last
value is included! (different from plain python and from
.iloc)

2 Can be also a callable function with one argument (the
calling Series or DataFrame) and that returns valid output
for indexing (one of the above)
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Lecture XXII: More pandas
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Group by

Data can be grouped with groupby, then summary function
(sum, mean, . . . ) can be applied to each group at the same
time.

iris = pd.read_csv('https://tinyurl.com/iris-data')

iris.groupby('variety').mean()

Groups are special lazy types which generate data only when
needed for the summary operation.
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Iterators

Object can be iterable. Python defines the iterator protocol as:

iterator.__iter__() Return the iterator object itself.
This is required to allow both containers and iterators to
be used with the for and in statements.

iterator.__next__() Return the next item from the
container. If there are no further items, raise the
StopIteration exception.
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Notable iterators

Built-in lists, tuples, ranges, sets, dicts are iterators.

Numpy arrays

Pandas Series and DataFrames
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Generators

def mygenerator() -> int:

for i in [1, 6, 70, 2]:

yield i

print('Ended') # Just to see when it reaches this

point↪→

g = mygenerator()

print(g) # not useful

print(next(g))

print(next(g))

print(next(g))

print(next(g))

print(next(g)) # Exception
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Pandas DataFrame

Be careful: the default iteration is on column names (similar to
dicts, which iterate on keys).

iterrows(): Iterate over the rows of a DataFrame as
(index, Series) pairs. This converts the rows to Series
objects, which can change the dtypes and has some
performance implications.

itertuples(): Iterate over the rows of a DataFrame as
namedtuples of the values. This is a lot faster than
iterrows(), and is in most cases preferable to use to
iterate over the values of a DataFrame.

Iterating is slow: whenever possibile try to use vectorized
operation or function application.
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Pandas function application

# apply the function to each column

df.apply(lambda col: col.mean() + 3)

# apply the function to each row

df.apply(lambda row: row + 3, axis=1)
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Pandas query

df[df['A A'] > 3]

# equivalent to this (backticks because of the space)

df.query('`A A` > 3')

# query can also refer to the index

df.query('index >= 15')

# same as

df[15:]
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