
PyQB

Monga

Iterators and
generators

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2023/24, I semester

1
cba 2023 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Iterators and
generators

123

Lecture XXI: Tabular data

PyQB

Monga

Iterators and
generators

124

Tabular data

Data are often given/collected as tables: matrices with rows for
individual records and columns for the fields of the records.
This is especially common in statistics, R has a built-in type for
this: the dataframe.

PyQB

Monga

Iterators and
generators

125

pandas

pandas (Python for data analysis) brings the DataFrame type
to Python. It is based on numpy.

Series: a one-dimensional labeled array capable of
holding any data type (integers, strings, floating point
numbers, Python objects, etc.). The axis labels are
collectively referred to as the index.

DataFrame: a 2-dimensional labeled data structure with
columns of potentially different types. You can think of it
like a spreadsheet, or a dict of Series objects.

PyQB

Monga

Iterators and
generators

126

Series

import pandas as pd

s = pd.Series(np.random.randn(5), index=["a", "b", "c",

"d", "e"])↪→

s is a numpy array of floats, each one has a label.

d = {"b": 1, "a": 0, "c": 2}

s = pd.Series(d)

The ordering depends on Python and pandas version. . . The
current ones takes the insertion order, but you can provide
explicitly the index.

d = {"b": 1, "a": 0, "c": 2}

s = pd.Series(d, index=['a', 'b', 'c'])

PyQB

Monga

Iterators and
generators

127

Series

A Series is convenient because it is a ndarray (and can be
vectorized) but also a dict.

PyQB

Monga

Iterators and
generators

128

Dataframes

d = { "one": pd.Series([1.0, 2.0, 3.0], index=["a",

"b", "c"]),↪→

"two": pd.Series([1.0, 2.0, 3.0, 4.0],

index=["a", "b", "c", "d"]),↪→

}

df = pd.DataFrame(d)

A DataFrame has an index and a columns attribute.
There are many ways of creating DataFrames, see the docs.

PyQB

Monga

Iterators and
generators

129

From csv or spreadsheets

A famous example: Fisher’s Iris flowers dataset.
150 records, "sepal length","sepal width","petal

length","petal width","class"

iris = pd.read_csv('iris.csv')

with a url

iris = pd.read_csv('https://tinyurl.com/iris-data')

PyQB

Monga

Iterators and
generators

130

Two ways of indexing

.loc[] “label based”

.iloc[] “position based”

For both you can use: a single value, a list of values, a boolean
array. Two notable things:

1 If you use a slice notation with .loc ('a':'f') the last
value is included! (different from plain python and from
.iloc)

2 Can be also a callable function with one argument (the
calling Series or DataFrame) and that returns valid output
for indexing (one of the above)

PyQB

Monga

Iterators and
generators

131

Lecture XXII: More pandas

PyQB

Monga

Iterators and
generators

132

Group by

Data can be grouped with groupby, then summary function
(sum, mean, . . .) can be applied to each group at the same
time.

iris = pd.read_csv('https://tinyurl.com/iris-data')

iris.groupby('variety').mean()

Groups are special lazy types which generate data only when
needed for the summary operation.

PyQB

Monga

Iterators and
generators

133

Iterators

Object can be iterable. Python defines the iterator protocol as:

iterator.__iter__() Return the iterator object itself.
This is required to allow both containers and iterators to
be used with the for and in statements.

iterator.__next__() Return the next item from the
container. If there are no further items, raise the
StopIteration exception.

PyQB

Monga

Iterators and
generators

134

Notable iterators

Built-in lists, tuples, ranges, sets, dicts are iterators.

Numpy arrays

Pandas Series and DataFrames

PyQB

Monga

Iterators and
generators

135

Generators

def mygenerator() -> int:

for i in [1, 6, 70, 2]:

yield i

print('Ended') # Just to see when it reaches this

point↪→

g = mygenerator()

print(g) # not useful

print(next(g))

print(next(g))

print(next(g))

print(next(g))

print(next(g)) # Exception

PyQB

Monga

Iterators and
generators

136

Pandas DataFrame

Be careful: the default iteration is on column names (similar to
dicts, which iterate on keys).

iterrows(): Iterate over the rows of a DataFrame as
(index, Series) pairs. This converts the rows to Series
objects, which can change the dtypes and has some
performance implications.

itertuples(): Iterate over the rows of a DataFrame as
namedtuples of the values. This is a lot faster than
iterrows(), and is in most cases preferable to use to
iterate over the values of a DataFrame.

Iterating is slow: whenever possibile try to use vectorized
operation or function application.

PyQB

Monga

Iterators and
generators

137

Pandas function application

apply the function to each column

df.apply(lambda col: col.mean() + 3)

apply the function to each row

df.apply(lambda row: row + 3, axis=1)

PyQB

Monga

Iterators and
generators

138

Pandas query

df[df['A A'] > 3]

equivalent to this (backticks because of the space)

df.query('`A A` > 3')

query can also refer to the index

df.query('index >= 15')

same as

df[15:]

	Iterators and generators

