Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

mattia.monga@unimi.it

Academic year 2023/24, | semester

@@@ 2023 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-<sa/4.07deed it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture XXI: Tabular data

Tabular data

Data are often given/collected as tables: matrices with rows for
individual records and columns for the fields of the records.

This is especially common in statistics, R has a built-in type for
this: the dataframe.

124

pandas (Python for data analysis) brings the DataFrame type
to Python. It is based on numpy.

@ Series: a one-dimensional labeled array capable of
holding any data type (integers, strings, floating point
numbers, Python objects, etc.). The axis labels are
collectively referred to as the index.

@ DataFrame: a 2-dimensional labeled data structure with
columns of potentially different types. You can think of it
like a spreadsheet, or a dict of Series objects.

import pandas as pd
s = pd.Series(np.random.randn(5), index=["a", "b", "c",
< "d", nen])

s is a numpy array of floats, each one has a label.
d = {"b": 1, ngn. O, e 2}

s = pd.Series(d)

The ordering depends on Python and pandas version. .. The
current ones takes the insertion order, but you can provide
explicitly the index.

d = {"b": 1, gt O, e 2}

s = pd.Series(d, index=['a', 'b', 'c'])

u]
8]
I
ul
it

126

A Series is convenient because it is a ndarray (and can be
vectorized) but also a dict.

»ao 127

Dataframes

d = { "one"

pd.Series([1.0, 2.0, 3.0], index=["a"
— "p", "c"]),
"two": pd.Series([1.0, 2.0, 3.0, 4.0],
<~ index=["a", "b",
}

IICII ,

"d"]) s
df = pd.DataFrame(d)

A DataFrame has an index and a columns attribute.

There are many ways of creating DataFrames, see the docs.

128

From csv or spreadsheets

A famous example: Fisher's Iris flowers dataset.

150 records, "sepal length","sepal width",'"petal
length","petal width","class"

iris = pd.read_csv('iris.csv')
with a url

iris = pd.read_csv('https://tinyurl.com/iris-data')

129

Two ways of indexing

@ .loc[] “label based”

@ .iloc[] “position based”

For both you can use: a single value, a list of values, a boolean
array. Two notable things:

@ If you use a slice notation with .loc ('a':'f') the last
.iloc)

value is included! (different from plain python and from

@ Can be also a callable function with one argument (the

calling Series or DataFrame) and that returns valid output
for indexing (one of the above)

- 130

Lecture XXII: More pandas

Hao

131

Data can be grouped with groupby, then summary function
(sum, mean, ...) can be applied to each group at the same
time.

iris = pd.read_csv('https://tinyurl.com/iris-data')

iris.groupby('variety') .mean()

Groups are special lazy types which generate data only when
needed for the summary operation.

132

u]
8]
I
ul
it

Iterators

Iterators and
. . enerators
Object can be iterable. Python defines the iterator protocol as: .
@ iterator.__iter__() Return the iterator object itself.
This is required to allow both containers and iterators to
be used with the for and in statements.

@ iterator.__next__() Return the next item from the
container. If there are no further items, raise the
Stoplteration exception.

133

Notable iterators

Iterators and
generators

Built-in lists, tuples, ranges, sets, dicts are iterators
o Numpy arrays

@ Pandas Series and DataFrames

134

Generators

def mygenerator() -> int:
for i in [1, 6, 70, 2]: Iterators and
yleld 1 generators
print('Ended') # Just to see when it reaches this
— point

g = mygenerator ()

print(g) # not useful

print (next(g))

print (next(g))

print (next(g))

print (next(g))

print (next(g)) # Exception

u]
8]
I
ul
it
4

hae 135

Pandas DataFrame

Be careful: the default iteration is on column names (similar to
dicts, which iterate on keys). T

generators

@ iterrows(): lterate over the rows of a DataFrame as
(index, Series) pairs. This converts the rows to Series
objects, which can change the dtypes and has some
performance implications.

@ itertuples(): lterate over the rows of a DataFrame as
namedtuples of the values. This is a lot faster than
iterrows(), and is in most cases preferable to use to
iterate over the values of a DataFrame.

Iterating is slow: whenever possibile try to use vectorized
operation or function application.

Pandas function application

Iterators and
generators

apply the function to each column
df .apply(lambda col: col.mean() + 3)

apply the function to each Tow
df .apply(lambda row: row + 3, axis=1)

u]
8]
I
ul
it
4

hae 137

Pandas query

Iterators and
df[df['A A'] > 3]

generators

equivalent to this (backticks because of the space)
df .query('"A A” > 3')

query can also refer to the index
df .query('index >= 15')

same as
df[15:]

	Iterators and generators

