

Programming in Python¹

Mattia Monga

Dip. di Informatica Università degli Studi di Milano, Italia mattia.monga@unimi.it

Academic year 2023/24, I semester

Vlonga

PyQB

PyQB

Monga

Gray-Scott Discrete Laplacian

Lecture XX: Laplacian operator

Gray-Scott systems

Systems driven by the Gray-Scott's equation exhibit Turing patterns $(D_u, D_v, f, k \text{ are constants})$.

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u - u v^2 + f \cdot (1 - u)$$
$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + u v^2 - (f + k) \cdot v$$

- These give the change of u and v chemicals over time
- The diffusion term can be approximated on a grid by computing the discrete Laplacian

Monga

Discrete Laplacian

$$abla^2 =
abla \cdot
abla = rac{\partial^2}{\partial x^2} + rac{\partial^2}{\partial y^2}$$

• Change on a grid (1-D):

$$\nabla f[n] = f[n+1] - f[n]$$
$$\nabla f[n] = f[n] - f[n-1]$$

• Second order change (1-D):

$$\nabla(\nabla f[n]) = \nabla(f[n+1]) - \nabla(f[n])$$

$$= (f[n+1] - f[n]) - (f[n] - f[n-1])$$

$$= f[n-1] - 2f[n] + f[n+1]$$

• In 2-D we do this independently on the 2 dimensions n, m:

$$\nabla(\nabla f[n,m]) = f[n-1,m] - 2f[n,m] + f[n+1,m] + f[n,m-1] - 2f[n,m] + f[n,m+1]$$

$$= f[n-1,m] + f[n+1,m] + f[n,m-1] + f[n,m+1] - 4f[n,m]$$

PyQB

/longa

Monga

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

-29	-18	-19	-37
-8	0	0	-13
-4	0	0	9
3	2	1	-5

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

0	1	0
1	-4	1
0	1	0

This way one can compute the Laplacian matrix using only vectorized plus.

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

-29	-18	-19	-37
-8	0	0	-13
-4	0	0	9
3	2	1	-5

$$X[1:-1, 2:]$$

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

L	0	1	0
ſ	1	-4	1
Γ	0	1	0

This way one can compute the Laplacian matrix using only vectorized plus.

PyQB

Monga

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

-29	-18	-19	-37
-8	0	0	-13
-4	0	0	9
3	2	1	-5

$$X[2:, 1:-1]$$

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

0	1	0
1	-4	1
0	1	0

This way one can compute the Laplacian matrix using only vectorized plus.

PyQB

Monga

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

-29	-18	-19	-37
-8	0	0	-13
-4	0	0	9
3	2	1	-5

$$X[1:-1, :-2]$$

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

0	1	0	
1	-4	1	
0	1	0	

This way one can compute the Laplacian matrix using only vectorized plus.

PyQB

Monga

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

$$X[:-2, 1:-1]$$

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

0	1	0
1	-4	1
0	1	0

This way one can compute the Laplacian matrix using only vectorized plus.

PyQB

Monga

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

-29	-18	-19	-37
-8	0	0	-13
-4	0	0	9
3	2	1	-5

$$X[1:-1, 1:-1]$$

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

0	1	0
1	-4	1
0	1	0

This way one can compute the Laplacian matrix using only vectorized plus.

PyQB

Monga

Consider also the diagonals

PyQB

Monga

Another approximation which takes into account also the "diagonals" is the *9-point stencil*.

1	1	1
1	-8	1
1	1	1

Gray-Scott

Experimental evidence

PyQB

Лongа

aray-Scott Discrete Laplacian

Turing proposed his model on a pure theoretical basis, but we have now also some experimental evidence:

Economou, A. D., Ohazama, A., Porntaveetus, T., Sharpe, P. T., Kondo, S., Basson, M. A., Gritli-Linde, A., Cobourne, M. T., Green, J. B. (2012). Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nature genetics, 44(3), 348–351. https://doi.org/10.1038/ng.1090