Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

mattia.monga@unimi.it

Academic year 2023/24, | semester

@@@ 2023 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-<sa/4.07deed it

.0

DA

1

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture XIlII: Random numbers

Random numbers

Pseudorandomness: the sequence of numbers is not
predictable. ..

from random import randint Random

numbers

To get a random integer z in the set [1..10]
x = randint (1, 10)

from random import randint

for _ in range(0,10):
print(randint (1, 100))

unless you know the seed.

from random import seed, randint

seed(292)
for _ in range(0,10):
print (randint (1, 100))

u]
|
I
ul
i

Exercise

Write a Python program which chooses an integer 1-10 and
asks to the user to guess it
“Invalid”;

@ if the number given by the user is not 1-10, it prints

@ if the number is the chosen one, it prints “Yes!”
@ otherwise “You didn’t guess it...".

Random

numbers

Exercise

“Invalid”;

Write a Python program which chooses an integer 1-10 and
asks to the user to guess it
@ if the number given by the user is not 1-10, it prints

Random

numbers

@ if the number is the chosen one, it prints “Yes!";
@ otherwise “You didn't guess it...".

1

Evolve the program: it should now ask until the user guess the
number correctly, giving hints (“higher...’

, “lower...")

Exercise

Write a Python program which chooses an integer 1-10 and Random
asks to the user to guess it numbers

@ if the number given by the user is not 1-10, it prints
“Invalid”;

@ if the number is the chosen one, it prints “Yes!”;

@ otherwise “You didn't guess it...".

Evolve the program: it should now ask until the user guess the
number correctly, giving hints (“higher...”, “lower...").

How many tries in the worst case? Can you write a program
guessing a number between 1 and int(1e32)

Example

@ Blue square: 1

@ Green area: %

0 1
The Monte Carlo method consists of choosing sample
experiments at random from a large set and then making

deductions on the basis of the probabilities estimated from
frequency of occurrences.

Monte Carlo

Monte Carlo

Lecture XV: Using Third-party libraries

Third-party libraries

Python is “sold" batteries included (with many useful built-in

libraries). Moreover, like many modern programming Wl
environments, it has standard online package directories that

list libraries produced by independent developers.
https://pypi.org/

The Python package index currently lists almost 300K libraries!

u]
|
I

ul
i

https://pypi.org/

Installing a library

The details are explained here: https://packaging.python
org/tutorials/installing-packages/

magic

@ It is very important to understand the difference between a
system-wide and a project-specific installation.

@ In most cases it is very easy, the pip program does all the

Third-party
libraries

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/

System-wide vs. Project-specific

If you don't take special precautions, a package is installed in a
way that makes it available to your Python system: every
Python interpreter you launch sees them.

@ In many cases, this is not what you want

e Different projects/programs might depend on different
versions of the libraries

@ Libraries themselves depend on other libraries, you want to
understand exactly which packages your program is using
in order to reproduce the settings on other machines

u]
|
I

ul
i

Third-party
libraries

Virtual environments

Python provides the idea of virtual development environments
(venv)

@ You can create one with: python -m venv Third-party
CHOOSE_A_NAME

libraries

@ You must activate it (syntax depends on your OS):
CHOOSE_A_NAME\Scripts\activate.bat

@ In an active virtual environment all the installation are
confined to it

@ You can get the list of installed packages with pip freeze

Simplified venv administration

Virtual environments are key to avoid messing up your system.
Many tools simplify their administration.

Third-party
@ pipenv (my preferred one, we will use this)

libraries
@ poetry (similar to pipenv, currently less popular, but it
has a better dependency control, a bit more complex)

@ conda (uses its own package index, great flexibility and
complexity, manage different python versions)

Virtual environments caveats

When you are working in a Python virtual environment, ST
remember to launch all your development tools “inside” the [EEIS
virtual space.

For example, to use IDLE don’t click on the main application

launcher, instead: python -m idlelib.

	Random numbers
	Monte Carlo
	Third-party libraries

