
PyQB

Monga

Functions

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2023/24, I semester

1
cba 2023 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Functions

31

Lecture V: Functions

PyQB

Monga

Functions

32

Summary

In Python3

Variables are names to refer to objects;

Objects are elements of types, which define the operations
that make sense on them;

Therefore, the basic instructions are the assignment (bind
a name to an object), the proper operations for each
object, and the commands to ask the services of the
operating system;

One can alter the otherwise strictly sequential execution of
instruction with control flow statements: if, for, while.

Remember that in python3, indentation matters (it is part of
the syntax).

PyQB

Monga

Functions

33

Proper operations

On objects one can apply binary and unary operators: 2 *

3 -(-5.0) not True 'foo' + 'bar'. . .

There also built-in functions like max(8,5,6), the full list
is here: https:
//docs.python.org/3/library/functions.html

(syntactically, commands like print or input cannot be
distinguished from other built-in functions)

Every object has methods that can be applied with the so
called dot notation: (3.2).is_integer()
'foo'.upper() 'xxx'.startswith('z'); the list of
which methods an object has is given by dir(object).

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

PyQB

Monga

Functions

34

Definition of functions

As variables are names for objects, one can also name
fragments of code:

def cube(x: int) -> int:

square = x * x

return square * x

Now we have a new operation cube, acting on ints: cube(3).
Type hints are optional (and ignored, you can call cube(3.2)
or cube('foo')), but very useful for humans (and tools like
mypy).

Equivalent

def cube(x):

square = x * x

return square * x

PyQB

Monga

Functions

35

A function computes a result

Returns a useful result
def concat_with_a_space(string1: str, string2: str) -> str:

return string1 + ' ' + string2

string1 is the _formal_ parameter

'foo' is the _actual_ parameter (like an assigment string1 =

'foo')↪→
print(concat_with_a_space('foo','bar'))

Return None
def repeated_print(string: str, repetitions: int) -> None:

for i in range(0, repetitions):

print(string)

repeatedPrint('Hello, world!', 3)

Recursive call:
def repeatedPrint(string: str, repetitions: int) -> None:

if repetitions > 0:

print(string)

repeatedPrint(string, repetitions - 1)

repeatedPrint('Hello, world!', 3)

PyQB

Monga

Functions

36

Functions are objects too

One can assign functions to variables:

def cube(x: int) -> int:

square = x * x

return square * x

mycube = cube

print(mycube(3))

print(type(mycube))

And short functions can even be expressed as literal expressions
(lambda expressions)

cube = lambda y: y*y*y

PyQB

Monga

Functions

37

Naming helps solving

The tower of Hanoi
https://www.mathsisfun.com/games/towerofhanoi.html

https://www.mathsisfun.com/games/towerofhanoi.html

PyQB

Monga

Functions

38

Describe the moves for a solution

Recursive thinking is a powerful problem solving technique and
it can be translated to Python thanks to recursive calls.
Hanoi moves A → C :

In A there is just one disk: move it to C

Otherwise in A there are n disks (> 1):
leap of faith! I suppose to know the moves needed to
move n − 1 disk; then

apply this (supposed) solution to move n− 1 disks from A
to B (leveraging on C , empty, as the third pole)
move the last disk from A to C
apply the (supposed) solution to move n− 1 disks from B
to C (leveraging on A, now empty, as the third pole)

This implicit description solve the problem! Finding a
non-recursive solution is possible but not that easy.

PyQB

Monga

Functions

39

In Python

def hanoi(n: int, a_from: str, c_to: str,

b_intermediate: str) -> None:↪→

if n == 1:

print('Move 1 disk from ' + a_from + ' to ' + c_to)

else:

hanoi(n - 1, a_from, b_intermediate, c_to)

print('Move 1 disk from ' + a_from + ' to ' + c_to)

hanoi(n - 1, b_intermediate, c_to, a_from)

hanoi(3, 'A', 'C', 'B')

	Functions

