
PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2023/24, I semester

1
cba 2023 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

2

Lecture I: Programming in Python for
quantitative biologists



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

3

Programming in Python (for quantitative
biologists)

The course introduces imperative programming by referring to
the Python language.

1 Python3 and its object-oriented
features;

2 Python3 libraries that can be useful
in scientific computation and data
analysis, in particular NumPy and
pandas.

Everything will be available on:
https://mameli.docenti.di.unimi.it/pyqb

https://mameli.docenti.di.unimi.it/pyqb


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

4

Course schedule

Tuesdays: 10:30 Aula Jommi, Thursday: 8:30 109,
Fridays: 8:30 Lab Lambda Scheduling is complex: check
the website

Lectures: 40h, Labs: 16h

Labs always on Friday

We will explore different setups: (1) a “scaffolded” one for
the first steps, (2) the plain python interpreter, and finally
(3) the notebooks popular in scientific practice

Tutor: TBD (computer science master student)

Text: every Python3 reference/book/tutorial is ok, you
can access freely to the book linked on the website

Final test: write (small) python programs without help



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

5

Why Python?

Programming can be approached in many “languages”, the
fundamental skills are general. . . but you cannot learn without
referring to a specific language.

A precise requirement of the teaching committee

Very popular in the scientific landscape

Easy to learn, many useful libraries, free software

Alternatives: Fortran, C, Matlab, Mathematica, R, Julia,
. . .

Python is slower, but it is considered easier to understand
and manage



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

6

Which Python?

We will use Python3 (current version is 3.11): be careful when
looking around, Python2 is still very common (but deprecated)
and incompatible. Python supports different “paradigms”, we
will focus on:

Imperative programming: programs describe changes in
registers and the executing environment;

Object-oriented: complex (imperative) programs are
organized around objects in order to hide and isolate
complexity.

This is a programming course: I will try to propose example
that I believe could be useful in your daily practice, but I’m not
a biologist.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

7

Programming

Programming in science can serve two (almost opposite) goals:

1 Understanding every detail of a computational process;

2 Compose computational process by assembling powerful
build blocks of which you understand very little.

Most of the current popularity of programming is related to
goal 2. . . with many sorcerer’s apprentices. But this course will
focus mainly on goal 1. In the last part of the course we will
bend towards 2, hopefully with a solid background.

Programming can be both hard and addictive: Teach Yourself
Programming in Ten Years

http://norvig.com/21-days.html
http://norvig.com/21-days.html


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

8

Fundamental concepts of Python

The programmer describes computational processes in terms of:

objects : all the entities manipulated by the program, each has
an identity (can be distinguished) and a value, that is
an element in a specific type (a set of values together
with the operations that make sense on them)

basic types : integers (int), floats, strings (str), functions; they
can be composed in more complex types

variables : names used to refer to objects; the same name can
refer to different objects during the same process

special commands : the only way to change the execution
environment (i.e., the “virtual machine” provided by
the operating system) is to use system calls; syscalls
change from system to system (e.g., Linux vs.
Windows), but Python wraps them and they appear
like the functions written by the programmers (e.g.,
print), even if they could not be programmed in
Python.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

9

Let’s try!

https://python.di.unimi.it/

You can use it without any personal account, but if you want
support you must create one, putting me as the
“guru”: mmonga

This platform will be used for the first lessons, since it requires
no setup at all: everything happens in the browser (and the
server).
(Thanks to the University of Waterloo, Canada for providing
the CS Circles)

https://python.di.unimi.it/


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

10

Lecture II: Fundamentals



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

11

Fundamental concepts of Python

The programmer describes computational processes in terms of:

objects : all the entities manipulated by the program, each has
an identity (can be distinguished) and a value, that is
an element in a specific type (a set of values together
with the operations that make sense on them)

basic types : integers (int), floats, strings (str), functions; they
can be composed in more complex types

variables : names used to refer to objects; the same name can
refer to different objects during the same process

special commands : the only way to change the execution
environment (i.e., the “virtual machine” provided by
the operating system) is to use system calls; syscalls
change from system to system (e.g., Linux vs.
Windows), but Python wraps them and they appear
like the functions written by the programmers (e.g.,
print), even if they could not be programmed in
Python.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

12

The onion model

Hardware

Operating System

Applications

Software

Operating System: it
is the only program
interpreted directly by
the hardware; other
pieces of software get
interpreted by the
virtual machine
provided by it.

Applications:
programs (e.g., the
python interpreter or
python programs)
executed within the
protected environment
created by the
operating system.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

13

What we want to do

Programming means to instruct an (automatic) interpret
with a precise description of a computational process.

(In fact, the only way to make a description precise is to
specify exactly the interpreter)

We use a software interpreter, itself a program interpreted
by the operating system (the stack of interpreters can be
much deeper).

Our interpret (Python3) manipulates objects taken from
types (that define which manipulations are possible),
referred by variables, with special commands to ask the
services provided by the operating system.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

14

Assignment

This is the fundamental statement for imperative programming:

A name, known as variable, is needed to refer to objects.
professor = "Mattia"

= is not symmetrical, read it as becomes: Left-hand-side is
always a variable, right-hand-side is an object, that can be
either a literal or anything referred by another variable.

A variable can change its value with another, following,
assignment. Thus, the same variable may refer to different
objects.
professor = "Violetta"

Basic objects (numbers, strings, Boolean values) are
immutable (the variable change, not the object; different
objects have always different identity)

Tracking a program means to track the values of all the
variables of a program during its execution.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

15

Type hints

Since Python 3.4 it is possible (and indeed desirable, especially
for novices) to hint any reader of a program about the type of
a variable.

A variable has always a type (a string in this case)
professor = 'Mattia'

Type hints make clear the intention of the programmer
(can be checked by external programs) professor: str

= 'Mattia'

Assigning to an object of another type is still possible
(there is no syntax error raised), but it should be regarded
with suspicion professor = True



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

16

Basic operations

Binary operators: 5 + 2, they compute a new object by
using the two objects on which they apply;

Unary operators: -(-5);

Functions: max, they compute a new object by using an
arbitrary number of objects (in general 0–. . . , max takes at
least 1) passed as parameters (or arguments) when the
function is called (max(3, 6, something_else));
sometimes the object computed is None;

Syntactically appear as functions, but commands like
print("Hello!") are actually used to request side effects
in the executing environment.

Official Python docs (3.11)

https://docs.python.org/3.11/


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

17

Different approaches

Problem: exchange the name of two objects (Chapter 1, last
exercise).

Know the basic syntax of variables and assignment =

Know the semantics of what you write: assigning an
object to a variable delete any previous assignment;

Natural strategy: use a temporary name to “save” the
value during the exchange;

“Fox” strategy: know language or library tricks For
example Python has a “multiple assignment” construct x,
y = y, x, or a special library function swap(x, y) could
exist;

“Hedgehog” strategy: study the problem in depth, e.g., if
objects are numbers you can exploit arithmetic.
x = x + y

y = x - y

x = x - y



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

17

Different approaches

Problem: exchange the name of two objects (Chapter 1, last
exercise).

Know the basic syntax of variables and assignment =

Know the semantics of what you write: assigning an
object to a variable delete any previous assignment;

Natural strategy: use a temporary name to “save” the
value during the exchange;

“Fox” strategy: know language or library tricks For
example Python has a “multiple assignment” construct x,
y = y, x, or a special library function swap(x, y) could
exist;

“Hedgehog” strategy: study the problem in depth, e.g., if
objects are numbers you can exploit arithmetic.
x = x + y

y = x - y

x = x - y



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

17

Different approaches

Problem: exchange the name of two objects (Chapter 1, last
exercise).

Know the basic syntax of variables and assignment =

Know the semantics of what you write: assigning an
object to a variable delete any previous assignment;

Natural strategy: use a temporary name to “save” the
value during the exchange;

“Fox” strategy: know language or library tricks For
example Python has a “multiple assignment” construct x,
y = y, x, or a special library function swap(x, y) could
exist;

“Hedgehog” strategy: study the problem in depth, e.g., if
objects are numbers you can exploit arithmetic.
x = x + y

y = x - y

x = x - y



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

17

Different approaches

Problem: exchange the name of two objects (Chapter 1, last
exercise).

Know the basic syntax of variables and assignment =

Know the semantics of what you write: assigning an
object to a variable delete any previous assignment;

Natural strategy: use a temporary name to “save” the
value during the exchange;

“Fox” strategy: know language or library tricks For
example Python has a “multiple assignment” construct x,
y = y, x, or a special library function swap(x, y) could
exist;

“Hedgehog” strategy: study the problem in depth, e.g., if
objects are numbers you can exploit arithmetic.
x = x + y

y = x - y

x = x - y



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

18

Basic types

bool False, True Logical operations

int 1, -33, 1_000_000_000 . . . Arithmetic
operations, no upper or lower limit

float 1.0, .1, 1.2e34 . . . Arithmetic operations,
limited but you have float('infinity') (and
float('nan'))
sys.float_info(max=1.7976931348623157e+308,

max_exp=1024, max_10_exp=308,

min=2.2250738585072014e-308,

min_exp=-1021, min_10_exp=-307, dig=15,

mant_dig=53,

epsilon=2.220446049250313e-16, radix=2,

rounds=1)

↪→

↪→

↪→

↪→

↪→

↪→

str 'aaaa\nthis is on a new line',
"bbb'b\"b" . . . Concatenation, alphabetical
ordering, replication, . . .



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

19

Homework

Finish chapters 1, 1E, 2, 2X, 3, 4.
It shouldn’t take more than a couple of hours, but exercising
continuously is crucial.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

20

Lecture III: Control flow



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

21

Basic types

bool False, True Logical operations

int 1, -33, 1_000_000_000 . . . Arithmetic
operations, no upper or lower limit

float 1.0, .1, 1.2e34 . . . Arithmetic operations,
limited but you have float('infinity') (and
float('nan'))
sys.float_info(max=1.7976931348623157e+308,

max_exp=1024, max_10_exp=308,

min=2.2250738585072014e-308,

min_exp=-1021, min_10_exp=-307, dig=15,

mant_dig=53,

epsilon=2.220446049250313e-16, radix=2,

rounds=1)

↪→

↪→

↪→

↪→

↪→

↪→

str 'aaaa\nthis is on a new line',
"bbb'b\"b" . . . Concatenation, alphabetical
ordering, replication, . . .



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

22

Sequence of operations

1 x = 1 + 2 * 3

2 x = x + 1

The 2 lines of code translate to at least 5 “logical” instructions
(maybe more, for example adding two big numbers require
multiple instructions):

1 2 * 3

2 1 + 6

3 x = 7

4 7 + 1

5 x = 8



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

23

Flow of control

It is normally not very useful to write programs that do just
one single computation. You wouldn’t teach a kid how to multiply

32× 43, but the general algorithm of multiplication (the level of

generality can vary).

To write programs that address a family of problems we need
to be able to select instructions to execute according to
conditions.

if x < 0:

x = -x

y = 2 * x

if x == -1:

x = x + 1

else:

x = 3 * x

y = 2 * x

In Python the indentation is part of the syntax and it is
mandatory.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

24

Input (special command needed)

A special command to ask to the operating system (same
as print)

input() or input("Prompt the user:")

The operating system (or the operating environment as in
cscircle) collect the input data (from keyboard/console or
the network in cscircles) and returns them to Python as a
str.

s = input() ## read a string
i = int(input()) ## read a string, convert
to int

Input on cscircles seems strange, but when one
understands the need of the mediation, the machinery is
rather straighforward



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

25

Lecture IV: Repetitions



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

26

Repetitions

It is also useful to be able to repeat instructions: it is very
convenient, but it also opens a deep Pandora’s box. . .
There are two ways of looping in Python:

Repeat by iterating on the
elements of a collection (similar
to math notation∑

i∈{a,b,c} f (i))

for i in range(0, 5):

# 0 1 2 3 4

print(i)

Repeat while a (variable)
condition is true

i = 0

while i < 5:

print(i)

i = i + 1



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

27

Euclid’s GCD

Two unequal numbers being set
out, and the less being continu-
ally subtracted in turn from the
greater, if the number which is left
never measures the one before it
until an unit is left, the original
numbers will be prime to one an-
other. [. . . ] But, if CD does not
measure AB, then, the less of the
numbers AB, CD being continually
subtracted from the greater, some
number will be left which will mea-
sure the one before it. [. . . ]

[Euclid “Elements”, Book VII, Prop. I, II
(c. 300 BC)]

a: int = 420

b: int = 240

while a != b:

if a > b:

a = a - b

else:

b = b - a

print(a)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

28

Loops can be difficult to understand

When you have loops, understanding the code can be a difficult
task and the only general strategy is to track the execution.

# This is known as Collatz's procedure

n = ...

while n > 1:

if n % 2 == 0:

# if the remainder of division by 2 is 0, i.e. n is

even↪→

n = n / 2

else:

n = 3*n + 1

We know (by empirical evidence) that it ends for all
n < 268 ≈ 1020, nobody is able to predict the number of
iterations given any n.
With loops it is also hard to exploit parallel execution.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

29

Learn to write loops can be hard

When you write a loop, you should have in mind two related
goals:

1 the loop must terminate: this is normally easy with for

loops (when the finite collection ends, the loop ends also),
but it can be tricky with whiles (remember to change
something in the condition);

2 the loop repeats something: the programmer should be
able to write the “repeating thing” in a way that makes it
equal in its form (but probably different in what it does).

The second part (technically known as loop invariant) is the
hardest to learn, since it requires experience, creativity, and
ingenuity.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

30

Homework

Create an account on https://github.com/ (if you
don’t have one) and send me the name.

https://github.com/


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

31

Lecture V: Functions



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

32

Summary

In Python3

Variables are names to refer to objects;

Objects are elements of types, which define the operations
that make sense on them;

Therefore, the basic instructions are the assignment (bind
a name to an object), the proper operations for each
object, and the commands to ask the services of the
operating system;

One can alter the otherwise strictly sequential execution of
instruction with control flow statements: if, for, while.

Remember that in python3, indentation matters (it is part of
the syntax).



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

33

Proper operations

On objects one can apply binary and unary operators: 2 *

3 -(-5.0) not True 'foo' + 'bar'. . .

There also built-in functions like max(8,5,6), the full list
is here: https:
//docs.python.org/3/library/functions.html

(syntactically, commands like print or input cannot be
distinguished from other built-in functions)

Every object has methods that can be applied with the so
called dot notation: (3.2).is_integer()
'foo'.upper() 'xxx'.startswith('z'); the list of
which methods an object has is given by dir(object).

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

34

Definition of functions

As variables are names for objects, one can also name
fragments of code:

def cube(x: int) -> int:

square = x * x

return square * x

Now we have a new operation cube, acting on ints: cube(3).
Type hints are optional (and ignored, you can call cube(3.2)
or cube('foo')), but very useful for humans (and tools like
mypy).

# Equivalent

def cube(x):

square = x * x

return square * x



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

35

A function computes a result

Returns a useful result
def concat_with_a_space(string1: str, string2: str) -> str:

return string1 + ' ' + string2

# string1 is the _formal_ parameter

# 'foo' is the _actual_ parameter (like an assigment string1 =

'foo')↪→
print(concat_with_a_space('foo','bar'))

Return None
def repeated_print(string: str, repetitions: int) -> None:

for i in range(0, repetitions):

print(string)

repeatedPrint('Hello, world!', 3)

Recursive call:
def repeatedPrint(string: str, repetitions: int) -> None:

if repetitions > 0:

print(string)

repeatedPrint(string, repetitions - 1)

repeatedPrint('Hello, world!', 3)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

36

Functions are objects too

One can assign functions to variables:

def cube(x: int) -> int:

square = x * x

return square * x

mycube = cube

print(mycube(3))

print(type(mycube))

And short functions can even be expressed as literal expressions
(lambda expressions)

cube = lambda y: y*y*y



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

37

Naming helps solving

The tower of Hanoi
https://www.mathsisfun.com/games/towerofhanoi.html

https://www.mathsisfun.com/games/towerofhanoi.html


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

38

Describe the moves for a solution

Recursive thinking is a powerful problem solving technique and
it can be translated to Python thanks to recursive calls.
Hanoi moves A → C :

In A there is just one disk: move it to C

Otherwise in A there are n disks (> 1):
leap of faith! I suppose to know the moves needed to
move n − 1 disk; then

apply this (supposed) solution to move n− 1 disks from A
to B (leveraging on C , empty, as the third pole)
move the last disk from A to C
apply the (supposed) solution to move n− 1 disks from B
to C (leveraging on A, now empty, as the third pole)

This implicit description solve the problem! Finding a
non-recursive solution is possible but not that easy.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

39

In Python

def hanoi(n: int, a_from: str, c_to: str,

b_intermediate: str) -> None:↪→

if n == 1:

print('Move 1 disk from ' + a_from + ' to ' + c_to)

else:

hanoi(n - 1, a_from, b_intermediate, c_to)

print('Move 1 disk from ' + a_from + ' to ' + c_to)

hanoi(n - 1, b_intermediate, c_to, a_from)

hanoi(3, 'A', 'C', 'B')



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

40

Lecture VI: Using the “naked” interpreter



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

41

The pieces of software

Python 3.10+, with pip and the IDLE editor (on MS
Windows they are bundled together):
https://www.python.org/downloads/

Git 2.30+ https://git-scm.com/downloads

(optional, Win and Mac only) Github desktop
https://desktop.github.com/

Homework assigments will be available via Github Classroom
(you will need a Github account).
When you push (hand in) your solution, a suite of tests is run.

https://www.python.org/downloads/
https://git-scm.com/downloads
https://desktop.github.com/


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

42

Software Configuration Management

Software Configuration Management like git are tools designed
to track all the revisions of some set of software artifacts (files).

q0 q1 q2 . . . qn

r0 r1 r2 . . . rncon
fig
ura

tio
n

The system configuration itself evolves in different versions.
One can have multiple branches of evolution.
A motivating talk on why you should use tools like these in
your scientific work.

https://www.youtube.com/watch?v=zwRdO9_GGhY
https://www.youtube.com/watch?v=zwRdO9_GGhY


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

43

Git

git is a powerful tool to manage all this complexity in a very
efficient (and distributed) way. It is not an easy tool, however.
A good tutorial is here. But for this course we use a very
simplistic workflow:

1 Clone (copy) on your machine a repository git clone

...;
2 Work on the artifacts
3 Add the modified artifacts to the changeset you want to

“publish” git add ...
4 Commit the changeset git commit -m"message"

providing a comment about what have you done
5 Push the changeset on Github git push
6 (If someone else is working on the same artifacts you can

sync with git pull)

All these steps are very easy (almost hidden, especially
authentication) if you use Github desktop.

http://arokem.github.io/2013-09-16-ISI/lessons/git-notebook/git-for-scientists.slides.html


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

44

IDLE

Programs are data! File extension is conventionally .py

To edit Python programs you need a text editor:
something like Notepad, not Word (a word processor)

IDLE is the “standard” one provided by the Python
distribution itself: it is easy to use and it provides an easy
way for executing programs without getting to the
command line

Other good choices: VS Code Atom Notepad++ or any
other universal text editor like EMACS or vi



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

45

Exercise

https://classroom.github.com/a/I3pCS400

https://classroom.github.com/a/I3pCS400


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

46

Lecture VII: Composite objects



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

47

Simple and composite objects

ints floats bools are simple objects: they have no
“parts”

Strings are an example of composite objects since it is
possible to consider also the characters: a str is a
sequence of single characters; an important (simplifying)
property: they are immutable

Generic immutable sequences (with elements of any type)
are called tuples (tuple): (1, 2, 'foo') (1,)

Generic mutable sequences (with elements of any type) are
called lists (list): [1, 2, 'foo'] [1]

[1,2].append(3)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

48

Mutability

Immutable objects are simpler to use:

x = (1, 2, 3)

y = x

x = (10, 20, 30) # x refers to a new object, since the

old cannot be changed↪→

print(x, y)

Mutable ones require some caution:

x = [1, 2, 3]

y = x

x[0] = 10 # both x and y refer to a changed object

print(x, y)

x = [100, 200, 300]

print(x, y)

z = x.copy() # a copy not the same object



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

49

Exercises

Write a function middle(L: list[int]) which takes a
list L as its argument, and returns the item in the middle
position of L. (In order that the middle is well-defined, you
should assume that L has odd length.) For example,
calling middle([8, 0, 100, 12, 1]) should return 100,
since it is positioned exactly in the middle of the list.
(assert is a useful tool to check assumptions — known
as preconditions — are indeed true)

Define a function prod(L: list[int]) which returns the
product of the elements in a list L.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

50

Dictionaries

A composite type dict that implements a mapping between
immutable keys and values.

d = {'key': 'foo', 3: 'bar'}

print(d['key']) # 'foo'

print(d[3]) # 'bar'

print(d[2]) # error!

Notation is similar to lists/tuples, but dicts are not sequences
indexed by numbers, you must use only the existing keys
(d.keys()).

if x in d.keys():

print(d[x])

A sequence of values can be obtained with d.values. A
sequence of 2-tuples (key, value) with d.items().



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

51

Lecture VIII: Other Composite Objects



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

52

Sets

A set is a composite object with no duplicate (non mutable)
elements. Common set operations are possible.

Set literals: {1,2,3} set()

{1,2,3}.union({3,5,6})

{1,2,3}.intersection({3,5,6})



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

53

Comprehensions

Comprehensions are a concise way to create lists, sets,
maps. . . It resembles the mathematical notation used for sets
A = {a2|a ∈ N}.
squares = [x**2 for x in range(10)]

# equivalent to:

squares = []

for x in range(10):

squares.append(x**2)

# filtering is possible

odds = [x for x in range(100) if x % 2 != 0]

# with a set

s = {x for x in range(50+1) if x % 5 == 0}

# with a dict

d = {x: x**2 for x in range(10)}



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

54

Make a program readable

You never write a program only for a machine! You, others,
tools will read the program for different purposes. Every
minute spent in making a program more understandable pays
off hours saved later.

Type hinting makes clear what a function needs to work
properly, and what it produces

Documentation helps understanding without the need to
read implementation details

Examples of use make easy to remember how to use a
function and can be used for verification



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

55

Example

from typing import Union

Num = Union[int, float]

def cube(x: Num) -> Num:

"""Return the cube of x.

>>> cube(-3)

-27

>>> abs(cube(0.2) - 0.008) < 10e-5

True

"""

return x * x * x

Examples can be tested by:
python -m doctest filename.py.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

56

Lecture IX: Files



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

57

Files

A file is an abstraction the operating system uses to preserve
data among the execution of programs. Data must be accessed
sequentially. (Italian reading people might enjoy this)

We need commands to ask to the OS to give access to a
file (open).

It is easy to read or write data sequentially, otherwise you
need special commands (seek) to move the file “cursor”

The number of open files is limited (≈ thousands), thus it
is better to close files when they are not in use

Files contain bits (normally considered by group of bytes, 8
bits), the interpretation (“format”) is given by the programs
which manipulate them. However, “lines of printable
characters” (plain text) is a rather universal/predefined
interpretation, normally the easiest to program.

https://mondodigitale.aicanet.net/2022-1/articoli/MD94_02_L_importanza_di_chiamarlo_file_Monga.pdf


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

58

File read access

f = open('filename.txt', 'r') # read only

# iterating on a file reads (all) the lines

for i in f:

print(i)

# End of file already reached, result is ''

f.readline()

f.close()

# File closed, error!

f.readline()

To avoid remembering to close explicitly, Python provides the
context manager syntax.
with open('filename.txt', 'r') as f:

for i in f:

print(i)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

59

Lecture X: Encapsulation



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

60

Procedural abstraction

Procedural abstraction is key for our thinking process
(remember the power of recursion, for example): giving a name
to a procedure/function enhances our problem solving skills.

def sum_range(a: int, b: int) -> int:

"""Sum integers from a through b.

>>> sum_range(1, 4)

10

>>> sum_range(3, 3)

3

"""

assert b >= a

result = 0

for i in range(a, b+1):

result = result + i

return result



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

61

Another “sum”

This is very similar. . .

def sum_range_cubes(a: int, b: int) -> int:

"""Sum the cubes of the integers from a through b.

>>> sum_range_cubes(1, 3)

36

>>> sum_range_cubes(-2, 2)

0

"""

assert b >= a

result = 0

for i in range(a, b+1):

result = result + cube(i) # cube(i: int) -> int

defined elsewhere↪→

return result



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

62

Another “sum”

This is also very similar. . .
1

a·(a+2) +
1

(a+4)·(a+6) +
1

(a+8)·(a+10) + · · ·+ 1
(b−2)·(b)

(Leibniz: 1
1·3 + 1

5·7 + 1
9·11 + · · · = π

8 )



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

62

Another “sum”

This is also very similar. . .
1

a·(a+2) +
1

(a+4)·(a+6) +
1

(a+8)·(a+10) + · · ·+ 1
(b−2)·(b)

(Leibniz: 1
1·3 + 1

5·7 + 1
9·11 + · · · = π

8 )

def pi_sum(a: int, b: int) -> float:

"""Sum 1/(a(a+2)) terms until (a+2) > b.

>>> from math import pi

>>> abs(8*pi_sum(1, 1001) - pi) < 10e-3

True

"""

assert b >= a

result = 0.0

for i in range(a, b+1, 4):

result = result + (1 / (i * (i + 2)))

return result



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

63

Can we abstract the similarity?

from typing import Callable

Num = int | float # same as Num = Union[int, float]

def gen_sum(a: int, b: int, fun: Callable[[int], Num], step: int = 1) -> Num:

"""Sum terms from a through b, incrementing by step.

>>> gen_sum(1, 4, lambda x: x)

10

>>> gen_sum(1, 3, lambda x: x**3)

36

>>> from math import pi

>>> abs(8*gen_sum(1, 1000, lambda x: 1 / (x * (x + 2)), 4) - pi) < 10e-3

True

"""

assert b >= a

result = 0.0

for i in range(a, b+1, step):

result = result + fun(i)

if isinstance(result, float) and result.is_integer():

return int(result)

return result



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

64

The huge value of procedural abstraction

It is worth to emphasize again the huge value brought by
procedural abstraction. In Python it is not mandatory to use
procedures/functions: the language is designed to be used also
for on the fly calculations.

x = 45

s = 0

for i in range(0, x):

s = s + i

This is ok, but it is not encapsulated
(in fact, since encapsulation is so
important you can at least consider it
encapsulated in file which contains it)

the piece of functionality is not easily to distinguish

it could be intertwined
with other unrelated
code

x = 45

a = 67 # another concern

s = 0

for i in range(0, x):

s = s + i

print(a) # another concern

the goal is not explicit, which data are needed, what
computes

it’s hard to reuse even in slightly different contexts



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

65

Encapsulate the functionality

def sum_to(x: int) -> int:

assert x >= 0

r = 0

for i in range(0, x):

r = r + i

return r

s = sum_to(45)

It gives to our mind a “piece of functionality”, the
interpreter we are programming is now “able” to do a new
thing that can be used without thinking about the internal
details
It makes clear which data it needs (an integer, ≥ 0 if we
add also an assertion or a docstring)
It makes clear that the interesting result is another integer
produced by the calculation
It can be reused easily and safely



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

66

Lecture XI: OOP



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

67

Object Oriented encapsulation

Encapsulation is so important that it is used also at a higher
level: a collection of related procedures.

x = 666

def increment():

x = x + 1

def decrement():

x = x - 1

Again: this is correct Python code, but it has problems:

Both the functions depends on x but this is not clear from
their signature: a user must look at the internal details

The two functions cannot be reused individually, but only
together with the other (and x)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

68

Classes

A class is a way to package together a collection of related
functions. The class is a “mold” to instance new objects that
encapsulated the related functionalities.

class Counter:

def __init__(self, start: int):

self.x = start

def increment(self):

self.x = self.x + 1

def decrement(self):

self.x = self.x - 1

c = Counter(666)

c.decrement()

d = Counter(999)

d.increment()



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

69

Lecture XII: Lab 4



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

70

Status

23 rostered students:

subscribed done

One triangle 17
Triangle kinds 16 4
DNA Hamming 21 10
Newton square root 15 6
Pythagorean triplets 8 4
DNA files 15 2
flatten list 3 1

The figures didn’t change that much since last lab!



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

71

Exercises

Eels https://classroom.github.com/a/p3UKOtXC

Flatten list (not new)
https://classroom.github.com/a/L8_e5QiN

DNA forensics
https://classroom.github.com/a/j5nL7_Ef

https://classroom.github.com/a/p3UKOtXC
https://classroom.github.com/a/L8_e5QiN
https://classroom.github.com/a/j5nL7_Ef


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

72

Lecture XIII: Random numbers



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

73

Random numbers

Pseudorandomness: the sequence of numbers is not
predictable. . .

from random import randint

# To get a random integer x in the set [1..10]

x = randint(1, 10)

from random import randint

for _ in range(0,10):

print(randint(1, 100))

unless you know the seed.

from random import seed, randint

seed(292)

for _ in range(0,10):

print(randint(1, 100))



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

74

Exercise

Write a Python program which chooses an integer 1–10 and
asks to the user to guess it

if the number given by the user is not 1–10, it prints
“Invalid”;

if the number is the chosen one, it prints “Yes!”;

otherwise “You didn’t guess it...”.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

74

Exercise

Write a Python program which chooses an integer 1–10 and
asks to the user to guess it

if the number given by the user is not 1–10, it prints
“Invalid”;

if the number is the chosen one, it prints “Yes!”;

otherwise “You didn’t guess it...”.

Evolve the program: it should now ask until the user guess the
number correctly, giving hints (“higher...”, “lower...”).



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

74

Exercise

Write a Python program which chooses an integer 1–10 and
asks to the user to guess it

if the number given by the user is not 1–10, it prints
“Invalid”;

if the number is the chosen one, it prints “Yes!”;

otherwise “You didn’t guess it...”.

Evolve the program: it should now ask until the user guess the
number correctly, giving hints (“higher...”, “lower...”).
How many tries in the worst case? Can you write a program
guessing a number between 1 and int(1e32)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

75

Example

0 1

1

Blue square: 1

Green area: π
4

The Monte Carlo method consists of choosing sample
experiments at random from a large set and then making
deductions on the basis of the probabilities estimated from
frequency of occurrences.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

76

Lecture XIV: Random numbers



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

77

Example

from random import random

def approx_pi(tries: int) -> float:

"""Return an approximation for pi.

>>> from math import pi

>>> from random import seed

>>> seed(7897) # Tests should be reproducible

>>> abs(4*approx_pi(1000) - pi) < 10e-2

True

>>> abs(4*approx_pi(100000) - pi) < abs(approx_pi(1000) - pi)

True

"""

assert tries > 0

within_circle = 0

for i in range (0, tries):

x = random() # range [0,1)

y = random()

if x**2 + y**2 < 1:

within_circle += 1

return within_circle / tries



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

78

Example

It’s easy to extend to make this work for any function on [0, 1).
from random import random

from typing import Callable

def approx_fun(predicate: Callable[[float, float], bool], tries:

int) -> float:↪→
"""Return an approximation for pi.

>>> from math import pi

>>> from random import seed

>>> seed(7897) # Tests should be reproducible

>>> within_circle = lambda x, y: x**2 + y**2 < 1

>>> abs(4*approx_fun(within_circle, 1000) - pi) < 10e-2

True

"""

assert tries > 0

true_cases = 0

for i in range (0, tries):

x = random() # range [0,1)

y = random()

if predicate(x, y):

true_cases += 1

return true_cases / tries



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

79

Simulations

Random number are useful also for simulation: for example, we
could simulate evolutionary drift.
from random import seed, randint, getstate, setstate

class DriftSimulation:

def __init__(self, sim_seed: int = 232943) -> None:

self.population = ['\N{MONKEY}', '\N{TIGER}', '\N{BUTTERFLY}', '\N{LIZARD}',

'\N{SNAIL}']↪→
seed(sim_seed)

self.r_state = getstate()

def offspring(self) -> None:

setstate(self.r_state)

new = self.population[randint(0, len(self.population)-1)]

self.population[randint(0, len(self.population)-1)] = new

self.r_state = getstate()

def simulate(self, generations: int) -> None:

for i in range(0, generations):

self.offspring()

a = DriftSimulation()

b = DriftSimulation()

a.simulate(2)

b.simulate(2)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

80

Lecture XV: Using Third-party libraries



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

81

Third-party libraries

Python is “sold” batteries included (with many useful built-in
libraries). Moreover, like many modern programming
environments, it has standard online package directories that
list libraries produced by independent developers.
https://pypi.org/
The Python package index currently lists almost 300K libraries!

https://pypi.org/


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

82

Installing a library

The details are explained here: https://packaging.python.
org/tutorials/installing-packages/

In most cases it is very easy, the pip program does all the
magic

It is very important to understand the difference between a
system-wide and a project-specific installation.

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

83

System-wide vs. Project-specific

If you don’t take special precautions, a package is installed in a
way that makes it available to your Python system: every
Python interpreter you launch sees them.

In many cases, this is not what you want

Different projects/programs might depend on different
versions of the libraries

Libraries themselves depend on other libraries, you want to
understand exactly which packages your program is using
in order to reproduce the settings on other machines



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

84

Virtual environments

Python provides the idea of virtual development environments
(venv)

You can create one with: python -m venv

CHOOSE_A_NAME

You must activate it (syntax depends on your OS):
CHOOSE_A_NAME\Scripts\activate.bat

In an active virtual environment all the installation are
confined to it

You can get the list of installed packages with pip freeze



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

85

Simplified venv administration

Virtual environments are key to avoid messing up your system.
Many tools simplify their administration.

pipenv (my preferred one, we will use this)

poetry (similar to pipenv, currently less popular, but it
has a better dependency control, a bit more complex)

conda (uses its own package index, great flexibility and
complexity, manage different python versions)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

86

Virtual environments caveats

When you are working in a Python virtual environment,
remember to launch all your development tools “inside” the
virtual space.
For example, to use Thonny you have to activate the proper
virtual environment each time you launch the application.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

87

Lecture XVI: NumPy arrays



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

88

NumPy

NumPy is a third-party library very popular for
scientific/numerical programming (https://numpy.org/).

Features familiar to matlab, R, Julia programmers

The key data structure is the array

1-dimension arrays: vectors
2-dimension arrays: matrices
n-dimension arrays

In some languages array is more or less synonym of list: Python
distinguishes: lists (mutable, arbitrary elements), arrays
(mutable, all elements have the same type), tuples (immutable,
fixed length, arbitrary elements).

https://numpy.org/


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

89

NumPy arrays

The most important data structure in NumPy is ndarray: a
(usually fixed-size) sequence of same type elements, organized
in one or more dimensions.
https://numpy.org/doc/stable/reference/arrays.

ndarray.html

Implementation is based on byte arrays: accessing an element
(all of the same byte-size) is virtually just the computation of
an ‘address’.

https://numpy.org/doc/stable/reference/arrays.ndarray.html
https://numpy.org/doc/stable/reference/arrays.ndarray.html


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

90

Why?

using NumPy arrays is often more compact, especially
when there’s more than one dimension

faster than lists when the operation can be vectorized

(slower than lists when you append elements to the end)

can be used with element of different types but this is less
efficient



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

91

ndarray

A ndarray has a dtype (the type of elements) and a shape

(the length of the array on each dimensional axis). (Note the
jargon: slightly different from linear algebra)

Since appending is costly, normally they are pre-allocated
(zeros, ones, arange, linspace, . . . )

vectorized operations can simplify code (no need for loops)
and they are faster with big arrays

vector indexing syntax (similar to R): very convenient (but
you need to learn something new)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

92

All the elements must have the same size

This is actually a big limitation: the faster access comes with a
price in flexibility.

>>> np.array(['','',''])

array(['', '', ''], dtype='<U1')

>>> np.array(['a','bb','ccc'])

array(['a', 'bb', 'ccc'], dtype='<U3')

>>> np.array(['a','bb','cccxxxxxxxxxxxxxxxxxx'])

array(['a', 'bb', 'cccxxxxxxxxxxxxxxxxxx'], dtype='<U21')



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

93

Usually the length is not changed

The best use of arrays is to avoid a change in their length, that
can be costly. Thus, they are normally preallocated at creation:

np.array([1,2,3])

np.zeros(2), np.zeros(2, float), np.ones(2)

np.empty((2,3)) six not meaningful float values

np.arange(1, 5) be careful with floats:

>>> np.arange(0.4, 0.8, 0.1)

array([0.4, 0.5, 0.6, 0.7])

>>> np.arange(0.5, 0.8, 0.1)

array([0.5, 0.6, 0.7, 0.8])

np.linspace(0.5, 0.8, 3) with this the length is
easier to predict

You can concatenate arrays with np.concatenate (be careful
with the shapes!)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

94

Lecture XVII: NumPy arrays



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

95

Don’t remove, select

In general you don’t remove elements but select them. Be
careful: if you don’t make an explicit copy you get a “view”
and possibly side-effects.

>>> a = np.ones((2,3))

>>> a

array([[1., 1., 1.],

[1., 1., 1.]])

>>> x = a[:, 1]

>>> x

array([1., 1.])

>>> x[0] = 0

>>> x

array([0., 1.])

>>> a

array([[1., 0., 1.],

[1., 1., 1.]])

>>> x = a[:, 1].copy()

>>> x[1] = 100

>>> x

array([ 0., 100.])

>>> a

array([[1., 0., 1.],

[1., 1., 1.]])



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

96

Indexing is powerful

Picture from “NumPy Illustrated: The Visual Guide to NumPy”, highly

recommended

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

97

Indexing is powerful

Picture from “NumPy Illustrated: The Visual Guide to NumPy”, highly

recommended

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

98

Warning! Assignment works differently from lists

>>> np = np.array([1,2,3,4,5])

>>> lst = [1,2,3,4,5]

>>> np[2:4] = 0

>>> np

array([1, 2, 0, 0, 5])

>>> lst[2:4] = 0 # Error!

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can only assign an iterable

>>> lst[2:4] = [0,0]

>>> lst

[1, 2, 0, 0, 5]

>>> lst[2:4] = [0,0,0]

>>> lst

[1, 2, 0, 0, 0, 5]

>>> np[2:4] = [0,0]

>>> np[2:4] = [0,0,0] # Error!

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: could not broadcast input array from shape (3,) into

shape (2,)↪→



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

99

The highest power: vectorization

Most of the basic mathematical function are vectorized: no
need for loops! This is both convenient and faster!

>>> a = np.array([1,2,3,4])

>>> a + 1

array([2, 3, 4, 5])

>>> a ** 2

array([ 1, 4, 9, 16])

>>> np.exp(a)

array([ 2.71828183, 7.3890561 , 20.08553692,

54.59815003])↪→



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

100

Array operations

On arrays you have many “aggregate” operations.

>>> a

array([1, 2, 3, 4])

>>> a.sum()

10

>>> a.max()

4

>>> a.argmin()

0

>>> a.mean()

2.5

Remember to look at dir or the online documentation.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

101

Lecture XVIII: Matplotlib



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

102

Matplotlib

When you have arrays with many data it is useful to have a
way to display them graphically.

The most popular is matplotlib
https://matplotlib.org/

Many other graphical frameworks (e.g., seaborn) based
on it

Many, many possibilities to tune your graphics! It’s hard
to master every detail.

Be careful: it can be used with two different styles.
1 The (preferred) object-oriented way: clean and rational,

but a bit more verbose
2 The procedural way: mostly useful only for “throw-away”

scripts, but for this reason more common in the examples
you can find online

https://matplotlib.org/


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

103

Graphical output is an operating system service

Output is a service provided by the operating system:
textual output is very standardized even across different
platform, graphics is not so stable

When you deal with graphical programs: expect
installation headaches, portability glitches, etc.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

104

The OO style

You need always to objects: a Figure and a Axes

plotting happens on axes, framed in a figure

very flexible: you can add plots on the same axis, or you
can have many axes collected in a single figure



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

105

Basic example

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-2*np.pi, 2*np.pi, 100)

fig, ax = plt.subplots()

ax.plot(x, np.sin(x))

fig.show()



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

106

Many different types of charts

If ax is a Axes

Scatter-plots ax.scatter

Bar-plots ax.bar

Histograms ax.hist

2D ax.imshow



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

107

Tweaks

add labels, legends, titles

add a grid

combine multiple plots on the same axis

combine multiple axes on the same figure



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

108

Save your pictures!

A Figure can be saved in a file with savefig. You should
keep in mind the difference between:

bitmap formats (png jpg . . . ): the file is matrix of pixels

vector formats (svg pdf . . . ): the file is a set of
instructions to reproduce the picture, less portable but it
can be magnified



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

109

Lecture XIX: A game of life



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

110

Using the notebook in a virtual environment

Since we are now interested in graphics, Jupyter notebooks can
be very convenient to see pictures together with the code.

1 We set up a virtual environment as usual

2 With pip install notebook we have the Jupyter
notebook machinery available

3 I normally want to have also a clean .py file, since .ipynb
do not play well with configuration management (git) and
other command line tools like the type checker or doctest:
thus I suggest to install jupytext; it needs a
jupytext.toml text file telling .ipynb and .py files are
paired, i.e., they are kept synchronized.

# Always pair ipynb notebooks to py files

formats = "ipynb,py:percent"

4 lunch the notebook with jupyter notebook



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

111

A game of life

In 1970, J.H. Conway proposed his Game of Life, a simulation
on a 2D grid:

1 Every cell can be alive or dead: the game start with a
population of alive cells (seed)

2 any alive cell with less of 2 alive neighbours dies
(underpopulation)

3 any alive cell with more than 3 alive neighbours dies
(overpopulation)

4 any dead cell with exactly 3 alive neighbours becomes
alive (reproduction)

The game is surprisingly rich: many mathematicians, computer
scientists, biologists. . . spent their careers on the emerging
patterns!



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

112

Life forms

There are names for many “life forms”: still lifes, oscillators,
starships. . .
A famous starship is the glider:

2 3 2 1

1 3 2 2

3 5 3 2

1 1 2 1

The glider repeats itself in another position after 4 generations.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

113

Python implementation

To implement a Game of Life simulation in Python, we can:

use a ndarray for the grid

each cell contains 0 (dead) or 1 (alive)

for simplicity we can add a “border” of zeros

0 0 0 0 0

0 1 1 0 0

0 1 0 1 0

0 1 1 1 0

0 0 0 0 0



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

114

Avoiding loops

For a 1-D array X

0 1 1 0 1 0 All the neighbours on the left X[:-2]

0 1 1 0 1 0 All the neighbours on the right X[2:]

What does X[2:] + X[:-2] represent? The sum is (yellow)
element by (yellow) element, the result is: [1,1,2,0]
Can you think to a similar solution for the 2-D case?



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

115

Avoiding loops

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

X[1:-1, 2:]



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

115

Avoiding loops

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

X[2:,2:]



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

115

Avoiding loops

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

X[2:,1:-1]



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

115

Avoiding loops

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

X[2:,1:-1]

And other 5 matrices. . .



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

116

Avoiding loops

X

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

X == 1

N

0 0 0 0 0 0

0 2 3 2 1 0

0 1 3 2 2 0

0 3 5 3 2 0

0 1 1 2 1 0

0 0 0 0 0 0

N > 3

Death by overpopulation: X[(X == 1) & (N > 3)] = 0

(empty in this case!)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

117

Lecture XX: Laplacian operator



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

118

Gray-Scott systems

Systems driven by the Gray-Scott’s equation exhibit Turing
patterns (Du,Dv , f , k are constants).

∂u

∂t
= Du∇2u − uv2 + f · (1− u)

∂v

∂t
= Dv∇2v + uv2 − (f + k) · v

These give the change of u and v chemicals over time

The diffusion term can be approximated on a grid by
computing the discrete Laplacian



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

119

Discrete Laplacian

∇2 = ∇ · ∇ = ∂2

∂x2
+ ∂2

∂y2

Change on a grid (1-D):

∇f [n] = f [n + 1]− f [n]

∇f [n] = f [n]− f [n − 1]

Second order change (1-D):

∇(∇f [n]) = ∇(f [n + 1])−∇(f [n])

= (f [n + 1]− f [n])− (f [n]− f [n − 1])

= f [n − 1]− 2f [n] + f [n + 1]

In 2-D we do this independently on the 2 dimensions n,m:

∇(∇f [n,m]) = f [n − 1,m]− 2f [n,m] + f [n + 1,m] +

f [n,m − 1]− 2f [n,m] + f [n,m + 1]

= f [n − 1,m] + f [n + 1,m] + f [n,m − 1] + f [n,m + 1]− 4f [n,m]



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

120

Vectorization

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

3 2 1 -5

-4 0 0 9

-8 0 0 -13

-29 -18 -19 -37

Same trick we used for “life”, but we need to compute the
5-point stencil with these weights (see previous derivation):

0 1 0

1 -4 1

0 1 0
This way one can compute the

Laplacian matrix using only

vectorized plus.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

120

Vectorization

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

X[1:-1, 2:]

3 2 1 -5

-4 0 0 9

-8 0 0 -13

-29 -18 -19 -37

Same trick we used for “life”, but we need to compute the
5-point stencil with these weights (see previous derivation):

0 1 0

1 -4 1

0 1 0
This way one can compute the

Laplacian matrix using only

vectorized plus.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

120

Vectorization

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

X[2:, 1:-1]

3 2 1 -5

-4 0 0 9

-8 0 0 -13

-29 -18 -19 -37

Same trick we used for “life”, but we need to compute the
5-point stencil with these weights (see previous derivation):

0 1 0

1 -4 1

0 1 0
This way one can compute the

Laplacian matrix using only

vectorized plus.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

120

Vectorization

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

X[1:-1, :-2]

3 2 1 -5

-4 0 0 9

-8 0 0 -13

-29 -18 -19 -37

Same trick we used for “life”, but we need to compute the
5-point stencil with these weights (see previous derivation):

0 1 0

1 -4 1

0 1 0
This way one can compute the

Laplacian matrix using only

vectorized plus.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

120

Vectorization

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

X[:-2, 1:-1]

3 2 1 -5

-4 0 0 9

-8 0 0 -13

-29 -18 -19 -37

Same trick we used for “life”, but we need to compute the
5-point stencil with these weights (see previous derivation):

0 1 0

1 -4 1

0 1 0
This way one can compute the

Laplacian matrix using only

vectorized plus.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

120

Vectorization

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

X[1:-1, 1:-1]

3 2 1 -5

-4 0 0 9

-8 0 0 -13

-29 -18 -19 -37

Same trick we used for “life”, but we need to compute the
5-point stencil with these weights (see previous derivation):

0 1 0

1 -4 1

0 1 0
This way one can compute the

Laplacian matrix using only

vectorized plus.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

121

Consider also the diagonals

Another approximation which takes into account also the
“diagonals” is the 9-point stencil.

1 1 1

1 -8 1

1 1 1



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

122

Experimental evidence

Turing proposed his model on a pure theoretical basis, but we
have now also some experimental evidence:

Economou, A. D., Ohazama, A., Porntaveetus, T.,
Sharpe, P. T., Kondo, S., Basson, M. A., Gritli-Linde,
A., Cobourne, M. T., Green, J. B. (2012). Periodic
stripe formation by a Turing mechanism operating at
growth zones in the mammalian palate. Nature genet-
ics, 44(3), 348–351. https: // doi. org/ 10. 1038/

ng. 1090

https://doi.org/10.1038/ng.1090
https://doi.org/10.1038/ng.1090


PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

123

Lecture XXI: Tabular data



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

124

Tabular data

Data are often given/collected as tables: matrices with rows for
individual records and columns for the fields of the records.
This is especially common in statistics, R has a built-in type for
this: the dataframe.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

125

pandas

pandas (Python for data analysis) brings the DataFrame type
to Python. It is based on numpy.

Series: a one-dimensional labeled array capable of
holding any data type (integers, strings, floating point
numbers, Python objects, etc.). The axis labels are
collectively referred to as the index.

DataFrame: a 2-dimensional labeled data structure with
columns of potentially different types. You can think of it
like a spreadsheet, or a dict of Series objects.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

126

Series

import pandas as pd

s = pd.Series(np.random.randn(5), index=["a", "b", "c",

"d", "e"])↪→

s is a numpy array of floats, each one has a label.

d = {"b": 1, "a": 0, "c": 2}

s = pd.Series(d)

The ordering depends on Python and pandas version. . . The
current ones takes the insertion order, but you can provide
explicitly the index.

d = {"b": 1, "a": 0, "c": 2}

s = pd.Series(d, index=['a', 'b', 'c'])



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

127

Series

A Series is convenient because it is a ndarray (and can be
vectorized) but also a dict.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

128

Dataframes

d = { "one": pd.Series([1.0, 2.0, 3.0], index=["a",

"b", "c"]),↪→

"two": pd.Series([1.0, 2.0, 3.0, 4.0],

index=["a", "b", "c", "d"]),↪→

}

df = pd.DataFrame(d)

A DataFrame has an index and a columns attribute.
There are many ways of creating DataFrames, see the docs.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

129

From csv or spreadsheets

A famous example: Fisher’s Iris flowers dataset.
150 records, "sepal length","sepal width","petal

length","petal width","class"

iris = pd.read_csv('iris.csv')

# with a url

iris = pd.read_csv('https://tinyurl.com/iris-data')



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

130

Two ways of indexing

.loc[] “label based”

.iloc[] “position based”

For both you can use: a single value, a list of values, a boolean
array. Two notable things:

1 If you use a slice notation with .loc ('a':'f') the last
value is included! (different from plain python and from
.iloc)

2 Can be also a callable function with one argument (the
calling Series or DataFrame) and that returns valid output
for indexing (one of the above)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

131

Lecture XXII: More pandas



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

132

Group by

Data can be grouped with groupby, then summary function
(sum, mean, . . . ) can be applied to each group at the same
time.

iris = pd.read_csv('https://tinyurl.com/iris-data')

iris.groupby('variety').mean()

Groups are special lazy types which generate data only when
needed for the summary operation.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

133

Iterators

Object can be iterable. Python defines the iterator protocol as:

iterator.__iter__() Return the iterator object itself.
This is required to allow both containers and iterators to
be used with the for and in statements.

iterator.__next__() Return the next item from the
container. If there are no further items, raise the
StopIteration exception.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

134

Notable iterators

Built-in lists, tuples, ranges, sets, dicts are iterators.

Numpy arrays

Pandas Series and DataFrames



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

135

Generators

def mygenerator() -> int:

for i in [1, 6, 70, 2]:

yield i

print('Ended') # Just to see when it reaches this

point↪→

g = mygenerator()

print(g) # not useful

print(next(g))

print(next(g))

print(next(g))

print(next(g))

print(next(g)) # Exception



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

136

Pandas DataFrame

Be careful: the default iteration is on column names (similar to
dicts, which iterate on keys).

iterrows(): Iterate over the rows of a DataFrame as
(index, Series) pairs. This converts the rows to Series
objects, which can change the dtypes and has some
performance implications.

itertuples(): Iterate over the rows of a DataFrame as
namedtuples of the values. This is a lot faster than
iterrows(), and is in most cases preferable to use to
iterate over the values of a DataFrame.

Iterating is slow: whenever possibile try to use vectorized
operation or function application.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

137

Pandas function application

# apply the function to each column

df.apply(lambda col: col.mean() + 3)

# apply the function to each row

df.apply(lambda row: row + 3, axis=1)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

138

Pandas query

df[df['A A'] > 3]

# equivalent to this (backticks because of the space)

df.query('`A A` > 3')

# query can also refer to the index

df.query('index >= 15')

# same as

df[15:]



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

139

Lecture XXIII: Exception handling



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

140

Exceptions

Exceptions and Errors are
object raised (or thrown)
in the middle of an
anomalous computation.

Exceptions change the
control flow: the control
passes to the “closer”
handler, if it exists:
otherwise it aborts.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

141

Exception handling

Exceptions can be handled: the strategy is normally an
“organized panic” in which the programmer tidies up the
environment and exits.

danger()

# An exception in danger

# aborts the program

try:

danger()

except:

# An exception in danger

# it's handled here

try:

danger()

except OverflowError as e:

# An exception in danger

# it's handled here

# The object is referred by

e↪→
finally:

# This is executed in any

case↪→



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

142

Raising an exception

To explicitly raise an exception, use the raise statement

if something == WRONG:

raise ValueError(f'The value {something} is wrong!')

Assertions are a disciplined way to raise exceptions.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

143

Lecture XXIV: Inheritance



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

144

Destructuring a bound computation

def approx_euler(t: np.ndarray, f0: float, dfun:

Callable[[float], float]) -> np.ndarray:↪→

"""Compute the Euler approximation of a function on times

t, with derivative dfun.↪→

"""

res = np.zeros_like(t)

res[0] = f0

for i in range(1, len(t)):

res[i] = res[i-1] + (t[i]-t[i-1])*dfun(res[i-1])

return res

Since we approximate the solution of a differential equation
p′ = f (p, t), we used the trick of writing dfun as a function of
p: this is why we call it by passing a point of res (and not of
pyt). This trick makes it possible to compute it together with
res itself (given the initial condition).



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

145

Two things together

A good way to keep two things separate (thus they can be
changed independently), but together is the object-oriented
approach: a class is a small world in which several
computations are bound together, they share data and can
depend one on each other.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

146

OOP approach

class EulerSolver:

"""An EulerSolver object computes the Euler approximation of a differential equation p'

= f(p, t).↪→

Create it by giving the f function, then set the initial condition P0.

The approximate solution on a given time span is computed by the method solve.

"""

def __init__(self, f: Callable[[float, float], float]):

self.f = f

def set_initial_condition(self, P0: float):

self.P0 = P0

def solve(self, time: np.ndarray) -> np.ndarray:

"""Compute p for t values over time."""

self.t = time

self.p = np.zeros_like(self.t)

# ....

def _diff(self, i: int) -> float:

"""Compute the differential increment at time of index i."""

assert i >= 0

# ...



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

147

How to use it

time = np.linspace(0, 5, 100)

solver = EulerSolver(lambda p, t: 0.7*p)

solver.set_initial_condition(10)

euler = solver.solve(time)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

148

What we have gained

Conceptual steps are separated (but kept together by the
class). We can decide to change one of them independently.
Object-oriented programming has a feature to make this easy:
inheritance

class RKSolver(EulerSolver):

def _diff(self, i: int) -> float:

"""Compute the differential increment at time

of index i."""↪→

assert i >= 0

# use Runge-Kutta now!

# overridden functionality is available with

# super()._diff(i)

RKSolver inherits the methods of EulerSolver and it
overrides the method _diff.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

149

Substitution principle

If inheritance is done properly (unfortunately not trivial in many
cases), the new class can be used wherever the old one was.

solver = RKSolver(lambda p, t: 0.7*p)

solver.set_initial_condition(10)

rk = solver.solve(time)

Overridden methods must be executable when the old ones
were and their must produce at least the “same effects”
(Liskov’s principle).



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

150

Lecture XXV: Probabilistic programming



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

151

How science works

Describing one single “scientific method” is problematic, but a
schema many will accept is:

1 Imagine a hypothesis

2 Design (mathematical/convenient) models consistent with
the hypothesis

3 Collect experimental data

4 Discuss the fitness of data given the models

It is worth noting that the falsification of models is not
automatically a rejection of hypotheses (and, more obviously,
neither a validation).



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

152

The role of Bayes Theorem

In this discussion, a useful relationship between data and
models is Bayes Theorem.

P(M,D) = P(M|D) · P(D) = P(D|M) · P(M)

Therefore:

P(M|D) = P(D|M)·P(M)
P(D)

The plausibility of the model given some observed data, is
proportional to the number of ways data can be produced by
the model and the prior plausibility of the model itself.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

153

Simple example

Model: a bag with 4
balls in 2 colors B/W
(but we don’t know
which of BBBB,
BBBW, BBWW, BWWW,
WWWW)

Observed: BWB

Which is the
plausibility of BBBB,
BBBW, BBWW, BWWW,
WWWW?

Bayes Theorem is
counting

Picture from: R. McElreath, Statistical

Rethinking



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

154

A computational approach

This Bayesian strategy is (conceptually) easy to transform in a
computational process.

1 Code the models

2 Run the models

3 Compute the plausibility of the models based on observed
data



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

155

Classical binomial example

Which is the proportion p of water covering Earth? The
models are indexed by the float 0 < p < 1

Given p, the probability of observing some W,L in a series
of independent random observations is:

P(W , L|p) = (W+L)!
W !·L! pW · (1− p)L (binomial distribution).

Do we have an initial (prior) idea?

Make observations, apply Bayes, update prior!



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

156

A conventional way of expressing the model

W ∼ Binomial(W + L, p)

p ∼ Uniform(0, 1)

Probabilistic programming is systematic way of coding this kind
of models, combining predefined statistical distributions and
Monte Carlo methods for computing the posterior plausibility
of parameters.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

157

In principle you can do it by hand

def dbinom(success: int, size: int, prob: float) -> float:

fail = size - success

return math.factorial(size)/(math.factorial(success)*math.factorial(fail))*prob**succ ⌋
ess*(1-prob)**(fail)↪→

Then,

W, L = 7, 3 # for example 'WWWLLWWLWW'

p_grid = np.linspace(start=0, stop=1, num=20)

prior = np.ones(20)/20

likelihood = dbinom(W, n=W+L, p=p_grid)

unstd_posterior = likelihood * prior

posterior = unstd_posterior / unstd_posterior.sum()

Unfeasible with many variables!



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

158

PyMC

import pymc as pm

W, L = 7, 3

earth = pm.Model()

with earth:

p = pm.Uniform("p", 0, 1) # uniform prior

w = pm.Binomial("w", n=W+L, p=p, observed=W)

posterior = pm.sample(2000)

posterior['p']



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

159

Lecture XXVI: Behind pymc



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

160

Behind PyMC

The probabilistic programming approach of PyMC is built on
two “technologies”:

1 A library that mixes numerical and symbolic computations
(Theano, Aesara, currently a new implementation called
PyTensor)

2 Markov Chain Monte-Carlo (MCMC) algorithms to
estimate posterior densities



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

161

PyTensor

It bounds numerical computations to its symbolic structure
(“graph”)

import aesara as at

a = at.tensor.dscalar()

b = at.tensor.dscalar()

c = a + b**2

f = at.function([a,b], c)

assert f(1.5, 2) == 5.5



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

162

Symbolic manipulations

Variables can be used to compute values, but also symbolic
manipulations.

d = at.tensor.grad(c, b)

f_prime = at.function([a, b], d)

assert f_prime(1.5, 2) == 4.

Note you still need to give an a because the symbolic structure
needs it.



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

163

Markov Chain Monte-Carlo

It’s way of estimating (relative) populations of “contiguous”
states.

It needs the capacity of evaluate the
population/magnitude of any two close states (but a
global knowledge of all the states at the same time)

It’s useful to estimate posterior distribution without
explicitly computing P(D): P(M|D) = P(D|M)·P(M)

P(D)



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

164

Metropolis

The easiest MCMC approach is the so-called Metropolis
algorithm (in fact appeared as Metropolis, N., Rosenbluth,
A., Rosenbluth, M., Teller, A., and Teller, E., 1953)

steps = 100000

positions = np.zeros(steps)

populations = [1,2,3,4,5,6,7,8,9,10]

current = 3

for i in range(steps):

positions[i] = current

proposal = (current + np.random.choice([-1,1])) %

len(populations)↪→

prob_move = populations[proposal] /

populations[current]↪→

if np.random.uniform(0, 1) < prob_move:

current = proposal



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

165

Convergence

Eventual convergence is guaranteed, but it can be painful slow
(and you dont’t know if you are there. . . ). Many algorithms try
to improve: Gibbs, Hamiltonian-MC, NUTS. . .



PyQB

Monga

Why Python

Python
fundamentals

Fundamentals

Assignment

Basic operations

Homework

Flow of
control

Selections

Repetitions

Functions

Software

git

IDLE

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

Types,
docstrings,
doctests

Files

Abstracting
similarities

Procedural
encapsulation

OO
encapsulation

Random
numbers

Monte Carlo

Simulations

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

Matplotlib

Graphical commands

OO plotting

A game of life

Gray-Scott

Discrete Laplacian

Iterators and
generators

Exception
handling

PyTensor

Monte-Carlo

166

Putting them together

import pymc as pm

linear_regression = pm.Model()

with linear_regression:

# PyTensor variables

sigma = pm.Uniform('sigma_h', 0, 50)

alpha = pm.Normal('alpha', 178, 20)

beta = pm.Normal('beta', 0, 10)

mu = alpha + beta*(adult_males['weight'] -

adult_males['weight'].mean())↪→

# Observed!

h = pm.Normal('height', mu, sigma,

observed=adult_males['height'])↪→

trace = pm.sample() # MCMC sampling


	Why Python
	Python fundamentals
	Fundamentals
	Assignment
	Basic operations

	Homework
	Flow of control
	Selections

	Repetitions
	Functions
	Software
	git
	IDLE

	Composite objects
	Tuples and lists

	Dictionaries
	Sets
	Comprehensions
	Types, docstrings, doctests
	Files
	Abstracting similarities
	Procedural encapsulation
	OO encapsulation
	Random numbers
	Monte Carlo
	Simulations
	Third-party libraries
	NumPy
	ndarray
	Creation

	Indexing
	Vectorization
	Array operations

	Matplotlib
	Graphical commands
	OO plotting

	A game of life
	Gray-Scott
	Discrete Laplacian

	Iterators and generators
	Exception handling
	PyTensor
	Monte-Carlo

