Programming in Python ${ }^{1}$

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia mattia.monga@unimi.it

Academic year 2022/23, I semester

1^{1} (1)(0) 2022 M. Monga. Creative Commons Attribuzione - Condividi allo stesso modo 4.0 Internazionale. http://creativecommons.org/licenses/by-sa/4.OAdeedsit \& $\bar{\equiv}$

Lecture XVI: Laplacian operator

Gray-Scott systems

Systems driven by the Gray-Scott's equation exhibit Turing patterns (D_{u}, D_{v}, f, k are constants).

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=D_{u} \nabla^{2} u-u v^{2}+f \cdot(1-u) \\
& \frac{\partial v}{\partial t}=D_{v} \nabla^{2} v+u v^{2}-(f+k) \cdot v
\end{aligned}
$$

- These give the change of u and v chemicals over time
- The diffusion term can be approximated on a grid by computing the discrete Laplacian

Discrete Laplacian

$\nabla^{2}=\nabla \cdot \nabla=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$

- Change on a grid (1-D):

$$
\begin{aligned}
& \nabla f[n]=f[n+1]-f[n] \\
& \nabla f[n]=f[n]-f[n-1]
\end{aligned}
$$

- Second order change (1-D):

$$
\begin{aligned}
\nabla(\nabla f[n]) & =\nabla(f[n+1])-\nabla(f[n]) \\
& =(f[n+1]-f[n])-(f[n]-f[n-1]) \\
& =f[n-1]-2 f[n]+f[n+1]
\end{aligned}
$$

- In 2-D we do this independently on the 2 dimensions n, m :

$$
\begin{aligned}
\nabla(\nabla f[n, m])= & f[n-1, m]-2 f[n, m]+f[n+1, m]+ \\
& f[n, m-1]-2 f[n, m]+f[n, m+1] \\
= & f[n-1, m]+f[n+1, m]+f[n, m-1]+f[n, m+1]-4 f[n, m]
\end{aligned}
$$

Vectorization

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

$$
X[1:-1,2:]
$$

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

0	1	0
1	-4	1
0	1	0

This way one can compute the Laplacian matrix using only vectorized plus.

Vectorization

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

$$
X[1:-1,2:]
$$

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

0	1	0
1	-4	1
0	1	0

This way one can compute the Laplacian matrix using only vectorized plus.

Vectorization

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

$$
X[1:-1,2:]
$$

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

0	1	0
1	-4	1
0	1	0

This way one can compute the Laplacian matrix using only vectorized plus.

Vectorization

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

$$
X[1:-1,2:]
$$

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

0	1	0
1	-4	1
0	1	0

This way one can compute the Laplacian matrix using only vectorized plus.

Vectorization

0	0	0	0	0	0
0	13	14	15	16	0
0	9	10	11	12	0
0	5	6	7	8	0
0	1	2	3	4	0
0	0	0	0	0	0

$$
X[1:-1,2:]
$$

Same trick we used for "life", but we need to compute the 5-point stencil with these weights (see previous derivation):

0	1	0
1	-4	1
0	1	0

This way one can compute the Laplacian matrix using only vectorized plus.

Consider also the diagonals

Another approximation which takes into account also the "diagonals" is the 9 -point stencil.

1	1	1
1	-8	1
1	1	1

Experimental evidence

Turing proposed his model on a pure theoretical basis, but we have now also some experimental evidence:

Economou, A. D., Ohazama, A., Porntaveetus, T., Sharpe, P. T., Kondo, S., Basson, M. A., Gritli-Linde, A., Cobourne, M. T., Green, J. B. (2012). Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nature genetics, 44(3), 348-351. https://doi. org/10. 1038/ ng. 1090

