Programming in Python!

Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, Italia
mattia.monga@unimi.it

Academic year 2022/23, | semester

1 . P -
@®® 2022 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0
Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it 1

Using the notebook in a virtual environment

Since we are now interested in graphics, Jupyter notebooks can
be very convenient to see pictures together with the code.

@ We set up a virtual environment as usual

@ With pip install notebook we have the Jupyter
notebook machinery available

@ | normally want to have also a clean .py file, since .ipynb
do not play well with configuration management (git) and
other command line tools like the type checker or doctest:
thus | suggest to install jupytext; it needs a
jupytext.toml text file telling .ipynb and .py files are
paired, i.e., they are kept synchronized.

Always pair ipynb notebooks to py files
formats = "ipynb,py"

@ lunch the notebook with jupyter notebook
106

PyQB

Monga

A game of life

A game of life

PyQB

Monga

A game of life

Lecture XV: A game of life

105

A game of life
In 1970, J.H. Conway proposed his Game of Life, a simulation Monga
on a 2D grid: »
A game of life

@ Every cell can be alive or dead: the game start with a
population of alive cells (seed)

@ any alive cell with less of 2 alive neighbours dies
(underpopulation)

@ any alive cell with more than 3 alive neighbours dies
(overpopulation)

@ any dead cell with exactly 3 alive neighbours becomes
alive (reproduction)

The game is surprisingly rich: many mathematicians, computer
scientists, biologists. .. spent their careers on the emerging
patterns!

107

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Life forms Python implementation

PyQB PyQB

To implement a Game of Life simulation in Python, we can:

Monga Monga

There are names for many “life forms™: still lifes, oscillators, o use a ndarray for the grid

StarShipS- .. A game of life . . A game of life
A famous starship is the glider: o each cell contains 0 (dead) or 1 (alive)

o for simplicity we can add a “border” of zeros

[J i I I oloflo|o]o
[J 215132 1@ 1@ of1]1|1]o0
000 :::: | 00 o1 o1l
I R [) ol1|1]0]o0

The glider repeats itself in another position after 4 generations. ololololo

108 109

Avoiding loops (A Avoiding loops
PyQB PyQB
ojo|lojofofoO
Monga Monga
For a 1-D array X A i i ocojo0of1|]0|0]|O A game of life
o(1l110]1]O0 All the neighbours on the right X[2:] 0(0]0]1|0]0
oj1(1|1|0]|0O
o(1l110]1]0 All the neighbours on the left X[:-2] 010100 0]0
ojo|o0ojof|o0foO
What does X[2:] + X[:-2] represent? The sum is (yellow)
element by (yellow) element, the result is: [1,1,2,0] X[1:-1, 2:]
Can you think to a similar solution for the 2-D case? olololololo
ojo0of1|]0|0]|O
110 o|of0|1]o0]o0 i

Avoiding loops Homework

PyQB PyQB
X N Monga Monga
0]J]0]J]0]0]0(O0 0J]0j0]0|0]O0 : :
A game of life A game of life
ojo0oj110|0|0O0 of1|1(2]1]0
o|fojof1]0¢(0 0|13|5|3[2]0
o https://classroom.github.com/a/bm0fyQYC
of1(1(1(0]|0O 0|13]2|2]0
ofofo0ofO0|O0]|O 023|210
ofojofojo¢(o0 ojfojofojO0|0O
X == N >3

Death by overpopulation: X[(X == 1) & (N > 3)] = 0
(empty in this case!) 112 113

https://classroom.github.com/a/bmOfyQYC

	A game of life

