
PyQB

Monga

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2022/23, I semester

1
cba 2022 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

42

Lecture VI: Composite objects

PyQB

Monga

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

43

Simple and composite objects

ints floats bools are simple objects: they have no
“parts”

Strings are an example of composite objects since it is
possible to consider also the characters: a str is a
sequence of single characters; an important (simplifying)
property: they are immutable

Generic immutable sequences (with elements of any type)
are called tuples (tuple): (1, 2, 'foo') (1,)

Generic mutable sequences (with elements of any type) are
called lists (list): [1, 2, 'foo'] [1]

[1,2].append(3)

PyQB

Monga

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

44

Mutability

Immutable objects are simpler to use:

x = (1, 2, 3)

y = x

x = (10, 20, 30) # x refers to a new object, since the

old cannot be changed↪→

print(x, y)

Mutable ones require some caution:

x = [1, 2, 3]

y = x

x[0] = 10 # both x and y refer to a changed object

print(x, y)

x = [100, 200, 300]

print(x, y)

z = x[:] # a copy not the same object

PyQB

Monga

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

45

Exercises

Write a function middle(L: list[int]) which takes a
list L as its argument, and returns the item in the middle
position of L. (In order that the middle is well-defined, you
should assume that L has odd length.) For example,
calling middle([8, 0, 100, 12, 1]) should return 100,
since it is positioned exactly in the middle of the list.
(assert is a useful tool to check assumptions — known
as preconditions — are indeed true)

Define a function prod(L: list[int]) which returns the
product of the elements in a list L.

PyQB

Monga

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

46

Dictionaries

A composite type dict that implements a mapping between
immutable keys and values.

d = {'key': 'foo', 3: 'bar'}

print(d['key']) # 'foo'

print(d[3]) # 'bar'

print(d[2]) # error!

Notation is similar to lists/tuples, but dicts are not sequences
indexed by numbers, you must use only the existing keys
(d.keys()).

if x in d.keys():

print(d[x])

A sequence of values can be obtained with d.values. A
sequence of 2-tuples (key, value) with d.items().

PyQB

Monga

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

47

Sets

A set is a composite object with no duplicate (non mutable)
elements. Common set operations are possible.

Set literals: {1,2,3} set()

{1,2,3}.union({3,5,6})

{1,2,3}.intersection({3,5,6})

PyQB

Monga

Composite
objects

Tuples and lists

Dictionaries

Sets

Comprehensions

48

Comprehensions

Comprehensions are a concise way to create lists, sets,
maps. . . It resembles the mathematical notation used for sets
A = {a2|a ∈ N}.
squares = [x**2 for x in range(10)]

equivalent to:

squares = []

for x in range(10):

squares.append(x**2)

filtering is possible

odds = [x for x in range(100) if x % 2 != 0]

with a set

s = {x for x in range(50+1) if x % 5 == 0}

with a dict

d = {x: x**2 for x in range(10)}

	Composite objects
	Tuples and lists

	Dictionaries
	Sets
	Comprehensions

