
PyQB

Monga

Theano

Monte-Carlo

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2021/22, II semester

1
cba 2022 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Theano

Monte-Carlo

146

Lecture XXII: Probabilistic programming

PyQB

Monga

Theano

Monte-Carlo

147

How science works

Describing one single “scientific method” is problematic, but a
schema many will accept is:

1 Imagine a hypothesis

2 Design (mathematical/convenient) models consistent with
the hypothesis

3 Collect experimental data

4 Discuss the fitness of data given the models

It is worth noting that the falsification of models is not
automatically a rejection of hypotheses (and, more obviously,
neither a validation).

PyQB

Monga

Theano

Monte-Carlo

148

The role of Bayes Theorem

In this discussion, a useful relationship between data and
models is Bayes Theorem.

P(M,D) = P(M|D) · P(D) = P(D|M) · P(M)

Therefore:

P(M|D) = P(D|M)·P(M)
P(D)

The plausibility of the model given some observed data, is
proportional to the number of ways data can be produced by
the model and the prior plausibility of the model itself.

PyQB

Monga

Theano

Monte-Carlo

149

Simple example

Model: a bag with 4
balls in 2 colors B/W
(but we don’t know
which of BBBB,
BBBW, BBWW, BWWW,
WWWW)

Observed: BWB

Which is the
plausibility of BBBB,
BBBW, BBWW, BWWW,
WWWW?

Bayes Theorem is
counting

Picture from: R. McElreath, Statistical

Rethinking

PyQB

Monga

Theano

Monte-Carlo

150

A computational approach

This Bayesian strategy is (conceptually) easy to transform in a
computational process.

1 Code the models

2 Run the models

3 Compute the plausibility of the models based on observed
data

PyQB

Monga

Theano

Monte-Carlo

151

Classical binomial example

Which is the proportion p of water covering Earth? The
models are indexed by the float 0 < p < 1

Given p, the probability of observing some W,L in a series
of independent random observations is:

P(W , L|p) = (W+L)!
W !·L! pW · (1− p)L (binomial distribution).

Do we have an initial (prior) idea?

Make observations, apply Bayes, update prior!

PyQB

Monga

Theano

Monte-Carlo

152

A conventional way of expressing the model

W ∼ Binomial(W + L, p)

p ∼ Uniform(0, 1)

Probabilistic programming is systematic way of coding this kind
of models, combining predefined statistical distributions and
Monte Carlo methods for computing the posterior plausibility
of parameters.

PyQB

Monga

Theano

Monte-Carlo

153

In principle you can do it by hand

def dbinom(success: int, size: int, prob: float) -> float:

fail = size - success

return np.math.factorial(size)/(np.math.factorial(success)*np.math.factorial(fail))*p ⌋
rob**success*(1-prob)**(fail)↪→

W, L = 7, 3

p_grid = np.linspace(start=0, stop=1, num=20)

prior = np.ones(20)/20

likelihood = dbinom(W, n=W+L, p=p_grid)

unstd_posterior = likelihood * prior

posterior = unstd_posterior / unstd_posterior.sum()

Unfeasible with many variables!

PyQB

Monga

Theano

Monte-Carlo

154

PyMC

import pymc as pm

W, L = 7, 3

earth = pm.Model()

with earth:

p = pm.Uniform("p", 0, 1) # uniform prior

w = pm.Binomial("w", n=W+L, p=p, observed=W)

posterior = pm.sample(2000)

posterior['p']

PyQB

Monga

Theano

Monte-Carlo

155

Behind pymc3

The probabilistic programming approach of pymc3 is built on
two “technologies”:

1 A library that mixes numerical and symbolic computations
(Theano, soon becoming Aesara)

2 Markov Chain Monte-Carlo (MCMC) algorithms to
estimate posterior densities

PyQB

Monga

Theano

Monte-Carlo

156

Theano

It bounds numerical computations to its symbolic structure
(“graph”)

import theano

from theano import tensor

a = tensor.dscalar('alpha')

b = tensor.dscalar('beta')

c = a + b**2

f = theano.function([a,b], c)

assert f(1.5, 2) == 5.5

PyQB

Monga

Theano

Monte-Carlo

157

Symbolic manipulations

Variables can be used to compute values, but also symbolic
manipulations.

d = tensor.grad(c, b)

f_prime = theano.function([a, b], d)

assert f_prime(1.5, 2) == 4.

Note you still need to give an a because the symbolic structure
needs it.

PyQB

Monga

Theano

Monte-Carlo

158

Markov Chain Monte-Carlo

It’s way of estimating (relative) populations of “contiguous”
states.

It needs the capacity of evaluate the
population/magnitude of any two close states (but a
global knowledge of all the states at the same time)

It’s useful to estimate posterior distribution without
explicitly computing P(D): P(M|D) = P(D|M)·P(M)

P(D)

PyQB

Monga

Theano

Monte-Carlo

159

Metropolis

The easiest MCMC approach is the so-called Metropolis
algorithm (in fact appeared as Metropolis, N., Rosenbluth,
A., Rosenbluth, M., Teller, A., and Teller, E., 1953)

steps = 100000

positions = np.zeros(steps)

populations = [1,2,3,4,5,6,7,8,9,10]

current = 3

for i in range(steps):

positions[i] = current

proposal = (current + np.random.choice([-1,1])) %

len(populations)↪→

prob_move = populations[proposal] /

populations[current]↪→

if np.random.uniform(0, 1) < prob_move:

current = proposal

PyQB

Monga

Theano

Monte-Carlo

160

Convergence

Eventual convergence is guaranteed, but it can be painful slow
(and you dont’t know if you are there. . .). Many algorithms try
to improve: Gibbs, Hamiltonian-MC, NUTS. . .

PyQB

Monga

Theano

Monte-Carlo

161

Putting them together

import pymc3 as pm

linear_regression = pm.Model()

with linear_regression:

Theano variables

sigma = pm.Uniform('sigma_h', 0, 50)

alpha = pm.Normal('alpha', 178, 20)

beta = pm.Normal('beta', 0, 10)

mu = alpha + beta*(adult_males['weight'] -

adult_males['weight'].mean())↪→

Observed!

h = pm.Normal('height', mu, sigma,

observed=adult_males['height'])↪→

trace = pm.sample() # MCMC sampling

	Theano
	Monte-Carlo

