

Monte-Carlo

Programming in Python¹

Mattia Monga

Dip. di Informatica Università degli Studi di Milano, Italia mattia.monga@unimi.it

Academic year 2021/22, II semester

¹⊛⊕⊛ 2022 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0 Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

How science works

PyQB

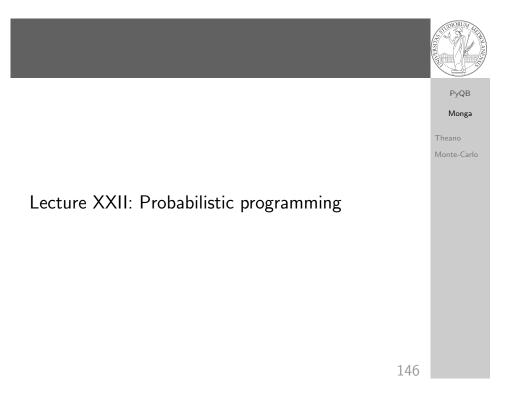
Monga

Monte-Carlo

Describing one single "scientific method" is problematic, but a schema many will accept is:

- Imagine a hypothesis
- 2 Design (mathematical/convenient) **models** consistent with the hypothesis
- 3 Collect experimental data
- ④ Discuss the fitness of data given the models

It is worth noting that the falsification of models is not automatically a rejection of hypotheses (and, more obviously, neither a validation).



The role of Bayes Theorem

In this discussion, a useful relationship between data and models is Bayes Theorem.

PyQB Monga

 $P(M, D) = P(M|D) \cdot P(D) = P(D|M) \cdot P(M)$

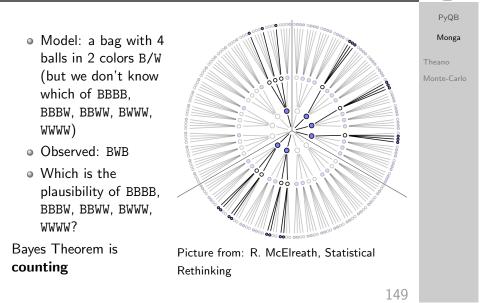
Therefore:

$$P(M|D) = \frac{P(D|M) \cdot P(M)}{P(D)}$$

The plausibility of the model given some observed data, is proportional to the number of ways data can be *produced* by the model and the prior plausibility of the model itself.

Monte-Carlo

Simple example



Classical binomial example

PyQB Monga

Monte-Carlo

- ${\ }$ Which is the proportion p of water covering Earth? The models are indexed by the float 0
- Given *p*, the probability of observing some W,L in a series of **independent random observations** is:

 $P(W, L|p) = \frac{(W+L)!}{W! \cdot L!} p^W \cdot (1-p)^L$ (binomial distribution).

- Do we have an initial (prior) idea?
- Make observations, apply Bayes, update prior!

PyQB Monga

Monte-Carlo

This Bayesian strategy is (conceptually) easy to transform in a computational process.

- Code the models
- ② Run the models
- 3 Compute the plausibility of the models based on observed data

150

A conventional way of expressing the model

PyQB

Monga heano

Monte-Carlo

 $W \sim Binomial(W + L, p)$ $p \sim Uniform(0, 1)$

Probabilistic programming is systematic way of coding this kind of models, combining predefined statistical distributions and Monte Carlo methods for computing the posterior plausibility of parameters.

151

152

In principle you can do it by hand

PyQB

Monga

Monte-Carlo

def dbinom(success: int, size: int, prob: float) -> float: fail = size - success return np.math.factorial(size)/(np.math.factorial(success)*np.math.factorial(fail))*p | \hookrightarrow rob**success*(1-prob)**(fail) W, L = 7, 3p_grid = np.linspace(start=0, stop=1, num=20) prior = np.ones(20)/20likelihood = dbinom(W, n=W+L, p=p_grid) unstd_posterior = likelihood * prior posterior = unstd_posterior / unstd_posterior.sum() Unfeasible with many variables!

153

Behind pymc3

PyQB Monga

Monte-Carlo

The probabilistic programming approach of pymc3 is built on two "technologies":

- A library that mixes numerical and symbolic computations (Theano, soon becoming Aesara)
- 2 Markov Chain Monte-Carlo (MCMC) algorithms to estimate posterior densities

PyMC

PyQB

Monga

Monte-Carlo

import pymc as pm W, L = 7, 3earth = pm.Model() with earth:

p = pm.Uniform("p", 0, 1) # uniform prior w = pm.Binomial("w", n=W+L, p=p, observed=W) posterior = pm.sample(2000)

posterior['p']

154

Theano PyQB Monga It bounds numerical computations to its symbolic structure ("graph") Theano Monte-Carlo import theano from theano import tensor a = tensor.dscalar('alpha') b = tensor.dscalar('beta') c = a + b * * 2f = theano.function([a,b], c) assert f(1.5, 2) == 5.5

Symbolic manipulations

PvQB

Monga

Monte-Carlo

Theano

```
npute values, but also symboli
```

Variables can be used to compute values, but also symbolic manipulations.

d = tensor.grad(c, b)

f_prime = theano.function([a, b], d)

assert $f_{prime}(1.5, 2) == 4.$

Note you still need to give an a because the symbolic structure needs it.

PyQB

Monga

Monte-Carlo

Metropolis

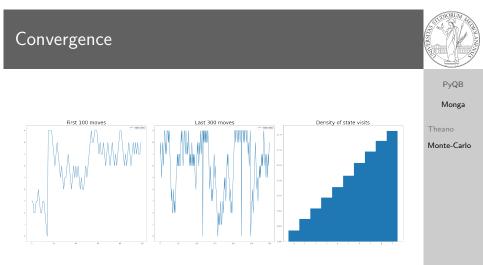
The easiest MCMC approach is the so-called Metropolis algorithm (in fact appeared as Metropolis, N., **Rosenbluth**, **A.**, **Rosenbluth**, **M.**, Teller, A., and Teller, E., 1953)

```
steps = 100000
positions = np.zeros(steps)
populations = [1,2,3,4,5,6,7,8,9,10]
current = 3
```

Markov Chain Monte-Carlo

It's way of estimating (relative) populations of "contiguous" states.

- It needs the capacity of evaluate the population/magnitude of any two close states (but a global knowledge of all the states *at the same time*)
- It's useful to estimate *posterior* distribution *without* explicitly computing P(D): $P(M|D) = \frac{P(D|M) \cdot P(M)}{P(D)}$



Eventual convergence is guaranteed, but it can be painful slow (and you dont't know if you are there...). Many algorithms try to improve: Gibbs, Hamiltonian-MC, NUTS...

159

PyQB Monga

Monte-Carlo

Putting them together

	PyQB
import pymc3 as pm	Monga
<pre>linear_regression = pm.Model()</pre>	Theano Monte-Carlo
with linear_regression:	
# Theano variables	
<pre>sigma = pm.Uniform('sigma_h', 0, 50)</pre>	
alpha = pm.Normal('alpha', 178, 20)	
<pre>beta = pm.Normal('beta', 0, 10)</pre>	
<pre>mu = alpha + beta*(adult_males['weight'] -</pre>	
\rightarrow adult_males['weight'].mean())	
# Observed!	
h = pm.Normal('height', mu, sigma,	
\rightarrow observed=adult_males['height'])	
<pre>trace = pm.sample() # MCMC sampling</pre>	
161	
161	