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Lecture XX: Exception handling, Iterators
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Exceptions

Exceptions and Errors are
object raised (or thrown)
in the middle of an
anomalous computation.

Exceptions change the
control flow: the control
passes to the “closer”
handler, if it exists:
otherwise it aborts.
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Exception handling

Exceptions can be handled: the strategy is normally an
“organized panic” in which the programmer tidies up the
environment and exits.

danger()

# An exception in danger

# aborts the program

try:

danger()

except:

# An exception in danger

# it's handled here

try:

danger()

except OverflowError as e:

# An exception in danger

# it's handled here

# The object is referred

by e↪→
finally:

# This is executed in any

case↪→
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Raising an exception

To explicitly raise an exception, use the raise statement

if something == WRONG:

raise ValueError(f'The value {something} is wrong!')

Assertions are a disciplined way to raise exceptions.
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Iterators

Object can be iterable. Python defines the iterator protocol as:

iterator.__iter__() Return the iterator object itself.
This is required to allow both containers and iterators to
be used with the for and in statements.

iterator.__next__() Return the next item from the
container. If there are no further items, raise the
StopIteration exception.
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Notable iterators

Built-in lists, tuples, ranges, sets, dicts are iterators.

Numpy arrays

Pandas Series and DataFrames
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Pandas DataFrame

Be careful: the default iteration is on column names (similar to
dicts, which iterate on keys).

iterrows(): Iterate over the rows of a DataFrame as
(index, Series) pairs. This converts the rows to Series
objects, which can change the dtypes and has some
performance implications.

itertuples(): Iterate over the rows of a DataFrame as
namedtuples of the values. This is a lot faster than
iterrows(), and is in most cases preferable to use to
iterate over the values of a DataFrame.

Iterating is slow: whenever possibile try to use vectorized
operation or function application.
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Pandas function application

# apply the function to each column

df.apply(lambda col: col.mean() + 3)

# apply the function to each row

df.apply(lambda row: row + 3, axis=1)
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Pandas query

df[df['A A'] > 3]

# equivalent to this (backticks because of the space)

df.query('`A A` > 3')

# query can also refer to the index

df.query('index >= 15')

# same as

df[15:]
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Lecture XXI: Inheritance
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Destructuring a bound computation

def approx_euler(t: np.ndarray, f0: float, dfun:

Callable[[float], float]) -> np.ndarray:↪→

"""Compute the Euler approximation of a function on

times t, with derivative dfun.↪→

"""

res = np.zeros_like(t)

res[0] = f0

for i in range(1, len(t)):

res[i] = res[i-1] + (t[i]-t[i-1])*dfun(res[i-1])

return res

Since we approximate the solution of a differential equation
p′ = f (p, t), we used the trick of writing dfun as a function of
p: this is why we call it by passing a point of res (and not of
pyt). This trick makes it possible to compute it together with
res itself (given the initial condition).
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Two things together

A good way to keep two things separate (thus they can be
changed independently), but together is the object-oriented
approach: a class is a small world in which several
computations are bound together, they share data and can
depend one on each other.
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OOP approach

class EulerSolver:

"""An EulerSolver object computes the Euler approximation of a differential equation

p' = f(p, t).↪→

Create it by giving the f function, then set the initial condition P0.

The approximate solution on a given time span is computed by the method solve.

"""

def __init__(self, f: Callable[[float, float], float]):

self.f = f

def set_initial_condition(self, P0: float):

self.P0 = P0

def solve(self, time: np.ndarray) -> np.ndarray:

"""Compute p for t values over time."""

self.t = time

self.p = np.zeros_like(self.t)

# ....

def _diff(self, i: int) -> float:

"""Compute the differential increment at time of index i."""

assert i >= 0

# ...
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How to use it

time = np.linspace(0, 5, 100)

solver = EulerSolver(lambda p, t: 0.7*p)

solver.set_initial_condition(10)

euler = solver.solve(time)
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What we have gained

Conceptual steps are separated (but kept together by the
class). We can decide to change one of them independently.
Object-oriented programming has a feature to make this easy:
inheritance

class RKSolver(EulerSolver):

def _diff(self, i: int) -> float:

"""Compute the differential increment at time

of index i."""↪→

assert i >= 0

# use Runge-Kutta now!

# overridden functionality is available with

# super()._diff(i)

RKSolver inherits the methods of EulerSolver and it
overrides the method _diff.
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Substitution principle

If inheritance is done properly (unfortunately not trivial in many
cases), the new class can be used wherever the old one was.

solver = RKSolver(lambda p, t: 0.7*p)

solver.set_initial_condition(10)

rk = solver.solve(time)

Overridden methods must be executable when the old ones
were and their must produce at least the “same effects”
(Liskov’s principle).
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