
PyQB

Monga

Exception
handling

Iterators

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2021/22, II semester

1
cba 2022 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Exception
handling

Iterators

130

Lecture XX: Exception handling, Iterators

PyQB

Monga

Exception
handling

Iterators

131

Exceptions

Exceptions and Errors are
object raised (or thrown)
in the middle of an
anomalous computation.

Exceptions change the
control flow: the control
passes to the “closer”
handler, if it exists:
otherwise it aborts.

PyQB

Monga

Exception
handling

Iterators

132

Exception handling

Exceptions can be handled: the strategy is normally an
“organized panic” in which the programmer tidies up the
environment and exits.

danger()

An exception in danger

aborts the program

try:

danger()

except:

An exception in danger

it's handled here

try:

danger()

except OverflowError as e:

An exception in danger

it's handled here

The object is referred

by e↪→
finally:

This is executed in any

case↪→

PyQB

Monga

Exception
handling

Iterators

133

Raising an exception

To explicitly raise an exception, use the raise statement

if something == WRONG:

raise ValueError(f'The value {something} is wrong!')

Assertions are a disciplined way to raise exceptions.

PyQB

Monga

Exception
handling

Iterators

134

Iterators

Object can be iterable. Python defines the iterator protocol as:

iterator.__iter__() Return the iterator object itself.
This is required to allow both containers and iterators to
be used with the for and in statements.

iterator.__next__() Return the next item from the
container. If there are no further items, raise the
StopIteration exception.

PyQB

Monga

Exception
handling

Iterators

135

Notable iterators

Built-in lists, tuples, ranges, sets, dicts are iterators.

Numpy arrays

Pandas Series and DataFrames

PyQB

Monga

Exception
handling

Iterators

136

Pandas DataFrame

Be careful: the default iteration is on column names (similar to
dicts, which iterate on keys).

iterrows(): Iterate over the rows of a DataFrame as
(index, Series) pairs. This converts the rows to Series
objects, which can change the dtypes and has some
performance implications.

itertuples(): Iterate over the rows of a DataFrame as
namedtuples of the values. This is a lot faster than
iterrows(), and is in most cases preferable to use to
iterate over the values of a DataFrame.

Iterating is slow: whenever possibile try to use vectorized
operation or function application.

PyQB

Monga

Exception
handling

Iterators

137

Pandas function application

apply the function to each column

df.apply(lambda col: col.mean() + 3)

apply the function to each row

df.apply(lambda row: row + 3, axis=1)

PyQB

Monga

Exception
handling

Iterators

138

Pandas query

df[df['A A'] > 3]

equivalent to this (backticks because of the space)

df.query('`A A` > 3')

query can also refer to the index

df.query('index >= 15')

same as

df[15:]

PyQB

Monga

Exception
handling

Iterators

139

Lecture XXI: Inheritance

PyQB

Monga

Exception
handling

Iterators

140

Destructuring a bound computation

def approx_euler(t: np.ndarray, f0: float, dfun:

Callable[[float], float]) -> np.ndarray:↪→

"""Compute the Euler approximation of a function on

times t, with derivative dfun.↪→

"""

res = np.zeros_like(t)

res[0] = f0

for i in range(1, len(t)):

res[i] = res[i-1] + (t[i]-t[i-1])*dfun(res[i-1])

return res

Since we approximate the solution of a differential equation
p′ = f (p, t), we used the trick of writing dfun as a function of
p: this is why we call it by passing a point of res (and not of
pyt). This trick makes it possible to compute it together with
res itself (given the initial condition).

PyQB

Monga

Exception
handling

Iterators

141

Two things together

A good way to keep two things separate (thus they can be
changed independently), but together is the object-oriented
approach: a class is a small world in which several
computations are bound together, they share data and can
depend one on each other.

PyQB

Monga

Exception
handling

Iterators

142

OOP approach

class EulerSolver:

"""An EulerSolver object computes the Euler approximation of a differential equation

p' = f(p, t).↪→

Create it by giving the f function, then set the initial condition P0.

The approximate solution on a given time span is computed by the method solve.

"""

def __init__(self, f: Callable[[float, float], float]):

self.f = f

def set_initial_condition(self, P0: float):

self.P0 = P0

def solve(self, time: np.ndarray) -> np.ndarray:

"""Compute p for t values over time."""

self.t = time

self.p = np.zeros_like(self.t)

....

def _diff(self, i: int) -> float:

"""Compute the differential increment at time of index i."""

assert i >= 0

...

PyQB

Monga

Exception
handling

Iterators

143

How to use it

time = np.linspace(0, 5, 100)

solver = EulerSolver(lambda p, t: 0.7*p)

solver.set_initial_condition(10)

euler = solver.solve(time)

PyQB

Monga

Exception
handling

Iterators

144

What we have gained

Conceptual steps are separated (but kept together by the
class). We can decide to change one of them independently.
Object-oriented programming has a feature to make this easy:
inheritance

class RKSolver(EulerSolver):

def _diff(self, i: int) -> float:

"""Compute the differential increment at time

of index i."""↪→

assert i >= 0

use Runge-Kutta now!

overridden functionality is available with

super()._diff(i)

RKSolver inherits the methods of EulerSolver and it
overrides the method _diff.

PyQB

Monga

Exception
handling

Iterators

145

Substitution principle

If inheritance is done properly (unfortunately not trivial in many
cases), the new class can be used wherever the old one was.

solver = RKSolver(lambda p, t: 0.7*p)

solver.set_initial_condition(10)

rk = solver.solve(time)

Overridden methods must be executable when the old ones
were and their must produce at least the “same effects”
(Liskov’s principle).

	Exception handling
	Iterators

