
PyQB

Monga

A game of life

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2021/22, II semester

1
cba 2022 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

A game of life

107

Lecture XVII: A game of life

PyQB

Monga

A game of life

108

Using the notebook in a virtual environment

Since we are now interested in graphics, Jupyter notebooks can
be very convenient to see pictures together with the code.

1 We set up a virtual environment as usual

2 With pip install notebook we have the Jupyter
notebook machinery available

3 I normally want to have also a clean .py file, since .ipynb
do not play well with configuration management (git) and
other command line tools like the type checker or doctest:
thus I suggest to install jupytext; it needs a
jupytext.toml text file telling .ipynb and .py files are
paired, i.e., they are kept synchronized.

Always pair ipynb notebooks to py files

formats = "ipynb,py"

4 lunch the notebook with jupyter notebook

PyQB

Monga

A game of life

109

A game of life

In 1970, J.H. Conway proposed his Game of Life, a simulation
on a 2D grid:

1 Every cell can be alive or dead: the game start with a
population of alive cells (seed)

2 any alive cell with less of 2 alive neighbours dies
(underpopulation)

3 any alive cell with more than 3 alive neighbours dies
(overpopulation)

4 any dead cell with exactly 3 alive neighbours becomes
alive (reproduction)

The game is surprisingly rich: many mathematicians, computer
scientists, biologists. . . spent their careers on the emerging
patterns!

PyQB

Monga

A game of life

110

Life forms

There are names for many “life forms”: still lifes, oscillators,
starships. . .
A famous starship is the glider:

2 3 2 1

1 3 2 2

3 5 3 2

1 1 2 1

The glider repeats itself in another position after 4 generations.

PyQB

Monga

A game of life

111

Python implementation

To implement a Game of Life simulation in Python, we can:

use a ndarray for the grid

each cell contains 0 (dead) or 1 (alive)

for simplicity we can add a “border” of zeros

0 0 0 0 0

0 1 1 0 0

0 1 0 1 0

0 1 1 1 0

0 0 0 0 0

PyQB

Monga

A game of life

112

Avoid loops

For a 1-D array X

0 1 1 0 1 0 All the neighbours on the left X[:-2]

0 1 1 0 1 0 All the neighbours on the right X[2:]

What does X[2:] + X[:-2] represent? The sum is (yellow)
element by (yellow) element, the result is: [1,1,2,0]
Can you think to a similar solution for the 2-D case?

PyQB

Monga

A game of life

113

Avoid loops

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

X[1:-1, 2:]

PyQB

Monga

A game of life

113

Avoid loops

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

X[2:,2:]

PyQB

Monga

A game of life

113

Avoid loops

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

X[2:,1:-1]

PyQB

Monga

A game of life

113

Avoid loops

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

X[2:,1:-1]

And other 5 matrices. . .

PyQB

Monga

A game of life

114

Avoid loops

X

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

X == 1

N

0 0 0 0 0 0

0 2 3 2 1 0

0 1 3 2 2 0

0 3 5 3 2 0

0 1 1 2 1 0

0 0 0 0 0 0

N > 3

Death by overpopulation: X[(X == 1) & (N > 3)] = 0

(empty in this case!)

PyQB

Monga

A game of life

115

Homework

https://classroom.github.com/a/bmOfyQYC

https://classroom.github.com/a/bmOfyQYC

	A game of life

