Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

mattia.monga@unimi.it

Academic year 2021/22, 1l semester

@@@ 2022 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-<sa/4.07deed it

.0

DA

1

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture XllI: Using Third-party libraries

Third-party libraries

Third-party
libraries

Python is “sold" batteries included (with many useful built-in
libraries). Moreover, like many modern programming
environments, it has standard online package directories that
list libraries produced by independent developers.
https://pypi.org/

The Python package index currently lists almost 300K libraries!

u]
|
I

ul
i

https://pypi.org/

Installing a library

The details are explained here: https://packaging.python
org/tutorials/installing-packages/

magic

@ It is very important to understand the difference between a
system-wide and a project-specific installation.

@ In most cases it is very easy, the pip program does all the

Third-party
libraries

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/

System-wide vs. Project-specific

If you don't take special precautions, a package is installed in a
way that makes it available to your Python system: every
Python interpreter you launch sees them.

@ In many cases, this is not what you want

e Different projects/programs might depend on different
versions of the libraries

@ Libraries themselves depend on other libraries, you want to
understand exactly which packages your program is using
in order to reproduce the settings on other machines

u]
|
I

ul
i

Third-party
libraries

Virtual environments

Python provides the idea of virtual development environments Vi gy
ibraries
(venv)

@ You can create one with: python -m venv
CHOOSE_A_NAME

@ You must activate it (syntax depends on your OS):
CHOOSE_A_NAME\Scripts \activate

@ In an active virtual environment all the installation are
confined to it

@ You can get the list of installed packages with pip freeze

Simplified venv administration

Virtual environments are key to avoid messing up your system
Many tools simplify their administration.

@ pipenv (my preferred one, we will use this)

@ poetry (similar to pipenv, currently less popular, but it
has a better dependency control, a bit more complex)

@ conda (uses its own package index, great flexibility and
complexity, manage different python versions)

Third-party
libraries

Virtual environments caveats

Third-party
libraries

When you are working in a Python virtual environment,

remember to launch all your development tools “inside” the
virtual space.

For example, to use IDLE don’t click on the main application
launcher, instead: python -m idlelib.

NumPy is a third-party library very popular for
scientific/numerical programming (https://numpy.org/).

@ Features familiar to matlab, R, Julia programmers
@ The key data structure is the array
e l-dimension arrays: vectors
e 2-dimension arrays: matrices
e n-dimension arrays
In some languages array is more or less synonym of list: Python
distinguishes: lists (mutable, arbitrary elements), arrays
(mutable, all elements have the same type), tuples (immutable,
fixed length, arbitrary elements).

https://numpy.org/

Lecture XIV: NumPy arrays

NumPy arrays

The most important data structure in NumPy is ndarray: a
(usually fixed-size) sequence of same type elements, organized
in one or more dimensions. ay
https://numpy.org/doc/stable/reference/arrays.
ndarray.html

Implementation is based on byte arrays: accessing an element

(all of the same byte-size) is virtually just the computation of
an ‘address’.

u]
|
I
ul
i

https://numpy.org/doc/stable/reference/arrays.ndarray.html
https://numpy.org/doc/stable/reference/arrays.ndarray.html

@ using NumPy arrays is often more compact, especially
when there's more than one dimension

o faster than lists when the operation can be vectorized
@ (slower than lists when you append elements to the end)

@ can be used with element of different types but this is less
efficient

u]
|
I
ul
i

ndarray

A ndarray has a dtype (the type of elements) and a shape
(the length of the array on each dimensional axis). (Note the

jargon: slightly different from linear algebra) ndarr |
@ Since appending is costly, normally they are pre-allocated ay
(zeros, ones, arange, linspace, ...)

@ vectorized operations can simplify code (no need for loops)
and they are faster with big arrays

@ vector indexing syntax (similar to R): very convenient (but
you need to learn something new)

All the elements must have the same size

This is actually a big limitation: the faster access comes with a
price in flexibility.

>>> np.array(['"',"'"',"'"'])

array(['', '', ''], dtype='<U1')

>>> np.array(['a','bb', 'ccc'])

array(['a', 'bb', 'ccc'], dtype='<U3')

>>> np.array(['a', 'bb', ' CCCXXXXXXXXXXXXXXXXXX'])

array(['a', 'bb', 'ccc xxxxxxxx'], dtype='<U21')

u]
|
I
ul
i

Usually the length is not changed

The best use of arrays is to avoid a change in their length, that
can be costly. Thus, they are normally preallocated at creation:
@ np.array([1,2,3])
@ np.zeros(2), np.zeros(2, float), np.ones(2)
@ np.empty((2,3)) six not meaningful float values
"]

np.arange (1, 5) be careful with floats:
>>> np.arange(0.4, 0.8, 0.1)
array([0.4, 0.5, 0.6, 0.7])
>>> np.arange(0.5, 0.8, 0.1)
array([0.5, 0.6, 0.7, 0.8])

@ np.linspace(0.5, 0.8, 3) with this the length is
easier to predict

You can concatenate arrays with np.concatenate (be careful
with the shapes!)

u]
|
I
ul
i

. 87

Don't remove, select

In general you don't remove elements but select them. Be
careful: if you don't make an explicit copy you get a “view'
and possibly side-effects.

>>> a = np.ones((2,3))

>>> a
array([[1., 1., 1.],

[1., 1., 1.1D >>> x = al:, 1].copyQ)
>>> x = al:, 1] >>> x[1] = 100
>>> x >>> x
array([1., 1.1) array([0., 100.])
>>> x[0] =0 >>> a
>>> x array([[1., 0., 1.],
array([0., 1.1) [1., 1., 1.1
>>> a
array([[1., 0., 1.],

[1., 1., 1.1

u]
|
I
ul
i

Indexing is powerful

a

np.arange(1, 6)
1 ‘ 2 ‘ 3 4 ‘ 5 ‘
] 2 3 4
a[1] a[2:4]
2]

.* a
al[2:4]

hea
der

al[1,3,41]
3] ’ 5 ‘ 2

4 5 ‘

"fancy indexing"
a[2:4]1 =0

1‘2‘3‘4 5‘ '
ot

Picture from “NumPy lllustrated: The Visual Guide to NumPy", highly
recommended

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d

Indexing is powerful

a > 5 False False False False False True True True False False False False False

np.any(a > 5) ala > 5] np.all(a > 5)
True 6 7 6 False
ala >5] =80
a 1 2 3 A 5] [} [} 5 4 3 2 1 e & and A
| or
al(a>=3) & (a<=5)1=9 A xor
a1 2 o o |6 7 6|0 e e 2 1 ‘")

Picture from “NumPy lllustrated: The Visual Guide to NumPy", highly

recommended

u]
|
I
ul
i

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d

The highest power: vectorization

Most of the basic mathematical function are vectorized: no
need for loops! This is both convenient and faster!

>>> a = np.array([1,2,3,4])

>>> a + 1

array([2, 3, 4, 5])

>>> a ** 2

array([1, 4, 9, 16])

>>> np.exp(a)

array([2.71828183, 7.3890561 , 20.08553692,

— 54.59815003])

u]
|
I
ul
i

Array operations

On arrays you have many “aggregate” operations.
>>> a

array([1, 2, 3, 4])
>>> a.sum()

10

>>> a.max()

4

>>> a.argmin()

0

>>> a.mean()

2.5

Remember to look at dir or the online documentation.

u]
|
I
ul
i

	Third-party libraries
	NumPy
	python3ndarray
	Creation
	Indexing
	Vectorization
	Array operations

