
PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2021/22, II semester

1
cba 2022 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

74

Lecture XIII: Using Third-party libraries

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

75

Third-party libraries

Python is “sold” batteries included (with many useful built-in
libraries). Moreover, like many modern programming
environments, it has standard online package directories that
list libraries produced by independent developers.
https://pypi.org/
The Python package index currently lists almost 300K libraries!

https://pypi.org/

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

76

Installing a library

The details are explained here: https://packaging.python.
org/tutorials/installing-packages/

In most cases it is very easy, the pip program does all the
magic

It is very important to understand the difference between a
system-wide and a project-specific installation.

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

77

System-wide vs. Project-specific

If you don’t take special precautions, a package is installed in a
way that makes it available to your Python system: every
Python interpreter you launch sees them.

In many cases, this is not what you want

Different projects/programs might depend on different
versions of the libraries

Libraries themselves depend on other libraries, you want to
understand exactly which packages your program is using
in order to reproduce the settings on other machines

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

78

Virtual environments

Python provides the idea of virtual development environments
(venv)

You can create one with: python -m venv

CHOOSE_A_NAME

You must activate it (syntax depends on your OS):
CHOOSE_A_NAME\Scripts \activate

In an active virtual environment all the installation are
confined to it

You can get the list of installed packages with pip freeze

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

79

Simplified venv administration

Virtual environments are key to avoid messing up your system.
Many tools simplify their administration.

pipenv (my preferred one, we will use this)

poetry (similar to pipenv, currently less popular, but it
has a better dependency control, a bit more complex)

conda (uses its own package index, great flexibility and
complexity, manage different python versions)

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

80

Virtual environments caveats

When you are working in a Python virtual environment,
remember to launch all your development tools “inside” the
virtual space.
For example, to use IDLE don’t click on the main application
launcher, instead: python -m idlelib.

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

81

NumPy

NumPy is a third-party library very popular for
scientific/numerical programming (https://numpy.org/).

Features familiar to matlab, R, Julia programmers

The key data structure is the array

1-dimension arrays: vectors
2-dimension arrays: matrices
n-dimension arrays

In some languages array is more or less synonym of list: Python
distinguishes: lists (mutable, arbitrary elements), arrays
(mutable, all elements have the same type), tuples (immutable,
fixed length, arbitrary elements).

https://numpy.org/

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

82

Lecture XIV: NumPy arrays

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

83

NumPy arrays

The most important data structure in NumPy is ndarray: a
(usually fixed-size) sequence of same type elements, organized
in one or more dimensions.
https://numpy.org/doc/stable/reference/arrays.

ndarray.html

Implementation is based on byte arrays: accessing an element
(all of the same byte-size) is virtually just the computation of
an ‘address’.

https://numpy.org/doc/stable/reference/arrays.ndarray.html
https://numpy.org/doc/stable/reference/arrays.ndarray.html

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

84

Why?

using NumPy arrays is often more compact, especially
when there’s more than one dimension

faster than lists when the operation can be vectorized

(slower than lists when you append elements to the end)

can be used with element of different types but this is less
efficient

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

85

ndarray

A ndarray has a dtype (the type of elements) and a shape

(the length of the array on each dimensional axis). (Note the
jargon: slightly different from linear algebra)

Since appending is costly, normally they are pre-allocated
(zeros, ones, arange, linspace, . . .)

vectorized operations can simplify code (no need for loops)
and they are faster with big arrays

vector indexing syntax (similar to R): very convenient (but
you need to learn something new)

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

86

All the elements must have the same size

This is actually a big limitation: the faster access comes with a
price in flexibility.

>>> np.array(['','',''])

array(['', '', ''], dtype='<U1')

>>> np.array(['a','bb','ccc'])

array(['a', 'bb', 'ccc'], dtype='<U3')

>>> np.array(['a','bb','cccxxxxxxxxxxxxxxxxxx'])

array(['a', 'bb', 'cccxxxxxxxxxxxxxxxxxx'], dtype='<U21')

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

87

Usually the length is not changed

The best use of arrays is to avoid a change in their length, that
can be costly. Thus, they are normally preallocated at creation:

np.array([1,2,3])

np.zeros(2), np.zeros(2, float), np.ones(2)

np.empty((2,3)) six not meaningful float values

np.arange(1, 5) be careful with floats:

>>> np.arange(0.4, 0.8, 0.1)

array([0.4, 0.5, 0.6, 0.7])

>>> np.arange(0.5, 0.8, 0.1)

array([0.5, 0.6, 0.7, 0.8])

np.linspace(0.5, 0.8, 3) with this the length is
easier to predict

You can concatenate arrays with np.concatenate (be careful
with the shapes!)

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

88

Don’t remove, select

In general you don’t remove elements but select them. Be
careful: if you don’t make an explicit copy you get a “view”
and possibly side-effects.

>>> a = np.ones((2,3))

>>> a

array([[1., 1., 1.],

[1., 1., 1.]])

>>> x = a[:, 1]

>>> x

array([1., 1.])

>>> x[0] = 0

>>> x

array([0., 1.])

>>> a

array([[1., 0., 1.],

[1., 1., 1.]])

>>> x = a[:, 1].copy()

>>> x[1] = 100

>>> x

array([0., 100.])

>>> a

array([[1., 0., 1.],

[1., 1., 1.]])

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

89

Indexing is powerful

Picture from “NumPy Illustrated: The Visual Guide to NumPy”, highly

recommended

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

90

Indexing is powerful

Picture from “NumPy Illustrated: The Visual Guide to NumPy”, highly

recommended

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

91

The highest power: vectorization

Most of the basic mathematical function are vectorized: no
need for loops! This is both convenient and faster!

>>> a = np.array([1,2,3,4])

>>> a + 1

array([2, 3, 4, 5])

>>> a ** 2

array([1, 4, 9, 16])

>>> np.exp(a)

array([2.71828183, 7.3890561 , 20.08553692,

54.59815003])↪→

PyQB

Monga

Third-party
libraries

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

92

Array operations

On arrays you have many “aggregate” operations.

>>> a

array([1, 2, 3, 4])

>>> a.sum()

10

>>> a.max()

4

>>> a.argmin()

0

>>> a.mean()

2.5

Remember to look at dir or the online documentation.

	Third-party libraries
	NumPy
	python3ndarray
	Creation
	Indexing
	Vectorization
	Array operations

