
PyQB

Monga

Flow of
control

Selections

Repetitions

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2021/22, II semester

1
cba 2022 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it


PyQB

Monga

Flow of
control

Selections

Repetitions

16

Lecture III: Control flow



PyQB

Monga

Flow of
control

Selections

Repetitions

17

Sequence of operations

1 x = 1 + 2 * 3

2 x = x + 1

The 2 lines of code translate to at least 5 “logical” instructions
(maybe more, for example adding two big numbers require
multiple instructions):

1 2 * 3

2 1 + 6

3 x = 7

4 7 + 1

5 x = 8



PyQB

Monga

Flow of
control

Selections

Repetitions

18

Flow of control

It is normally not very useful to write programs that do just
one single computation. You wouldn’t teach a kid how to multiply

32× 43, but the general algorithm of multiplication (the level of

generality can vary).

To write programs that address a family of problems we need
to be able to select instructions to execute according to
conditions.

if x < 0:

x = -x

y = 2 * x

if x == -1:

x = x + 1

else:

x = 3 * x

y = 2 * x

In Python the indentation is part of the syntax and it is
mandatory.



PyQB

Monga

Flow of
control

Selections

Repetitions

19

Repetitions

It is also useful to be able to repeat instructions: it is very
convenient, but it also opens a deep Pandora’s box. . .
There are two ways of looping in Python:

Repeat by iterating on the
elements of a collection (similar
to math notation∑

i∈{a,b,c} f (i))

for i in range(0, 5):

# 0 1 2 3 4

print(i)

Repeat while a (variable)
condition is true

i = 0

while i < 5:

print(i)

i = i + 1



PyQB

Monga

Flow of
control

Selections

Repetitions

20

Loops can be difficult to understand

When you have loops, understanding the code can be a difficult
task and the only general strategy is to track the execution.

# This is known as Collatz's procedure

n = ...

while n > 1:

if n % 2 == 0:

# if the remainder of division by 2 is 0, i.e. n

is even↪→

n = n / 2

else:

n = 3*n + 1

We know (by empirical evidence) that it ends for all
n < 268 ≈ 1020, nobody is able to predict the number of
iterations given any n.
With loops it is also hard to exploit parallel execution.



PyQB

Monga

Flow of
control

Selections

Repetitions

21

Learn to write loops can be hard

When you write a loop, you should have in mind two related
goals:

1 the loop must terminate: this is normally easy with for

loops (when the finite collection ends, the loop ends also),
but it can be tricky with whiles (remember to change
something in the condition);

2 the loop repeats something: the programmer should be
able to write the “repeating thing” in a way that makes it
equal in its form (but probably different in what it does).

The second part (technically known as loop invariant) is the
hardest to learn, since it requires experience, creativity, and
ingenuity.



PyQB

Monga

Flow of
control

Selections

Repetitions

22

Homework

You can do CS Circles up to chapter 9: please try
especially exercise “OneTriangle” (7C).

Create an account on https://github.com/ (if you
don’t have one) and send me the name (Zulip preferred,
use a private message if you don’t want to make it known
to the other students).

https://github.com/

	Flow of control
	Selections
	Repetitions


