Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, Italia

mattia.monga@unimi.it

Anno accademico 2020/21, | semestre

@®® 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0 Internazionale
http://creativecommons.org/licenses/by-sa/4.0/deed.it

[m]

=

Dac 1


mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lezione XVI: Design by Contract con Eiffel

. = = = E DA 136



Contratti ed ereditarieta

Il principio di sostituzione di Liskov stabilisce che, perché un oggetto di una classe
derivata soddisfi la relazione is-a, ogni suo metodo:

@ deve essere accessibile a pre-condizioni uguali o piti deboli del metodo della
superclasse;

@ deve garantire post-condizioni uguali o pit forti del metodo della superclasse;
Altrimenti il “figlio” non pud essere sostituito al “padre” senza alterare il sistema.

137

Contratti ed
ereditarieta



Principio di sostituibilita

Le due condizioni sono quindi:

Contratti ed
ereditarieta

'DREparent — PREderived (1)
POS Tderived - POS Tparent (2)

@ (1) in un programma corretto non puo succedere che PREparen: valga e
PRE jerivead NO; I'oggetto evoluto deve funzionare in ogni stato in cui funzionava
I'originale: non puo avere obbligazioni pil stringenti, semmai pit lasche.

@ (2) in un programma corretto non pud succedere che valga POST yeriveds Ma
non POST parent; un stato corretto dell’'oggetto evoluto deve essere corretto
anche quando ci si attende i benefici dell’originale.



Principio di sostituibilita (cont.)

Un modo per garantire che le condizioni (1) e (2) siano automaticamente vere Contratti ed
. y . . . ereditarieta
consiste nell'assumere implicitamente che, se la classe evoluta specifica

esplicitamente una precondizione P e una postcondizione Q, le reali pre- e
post-condizioni siano:

PREderived = PREparent \/ P (3) PREparent — PREderived
POSTderived - POSTparent A Q (4) POSTd&rived Ed POSTparent

In Eiffel: require else € ensure then

u]
8
I
ul
it

139



Contratti “astratti”

extend (x: G)
-—- Add “z' at end of list.

require , Stronger precondition. . . ma weaker
space_available: not full L. .

deferred (uguali in realta) in astratto

ensure full: BOOLEAN
one_more: -- Is representation full?
count = old count + 1 -— (Answer: if and only if

end

number of items is equal

to capacity)
full: BOOLEAN

do
-- Is representation full? Result := (count = capacity)
-- (Default: mno) end
do

Result := False
end

Contratti ed
ereditarieta



Problema: i parametri. ..

Contratti ed
@ Animale mangia Cibo (is_.a Cosa)

ereditarieta

@ Mucca (is_a Animale) mangia Erba (is_a Cibo)

Ma questa covarianza € contraria al principio di Liskov perché restringe le

precondizioni. La controvarianza (Mucca mangia Cosa, Sather) e l'invarianza
(Mucca mangia Cibo, Java) vanno bene.

Eiffel invece & covariante. .. (il che, impedendo un controllo di conformita statico,
introduce parecchie complicazioni ~» CATcall, run time type identification. . . ).

141



Trattamento delle situazioni anomale

Nel modello di Eiffel hanno un ruolo importante le eccezioni, che vengono trattate
in un modo differente da quello dei pid diffusi linguaggi di programmazione
(Ada-like).

An exception is a run-time event that may cause a routine call to fail (contract
violation). A failure of a routine causes an exception in its caller.




Anti-pattern

sqrt (n: REAL): REAL
do

if x < 0.0 then

raise Negative
else

normal_square_root_computation
end
exception

when Negative =>

print("Negative argumentN")
return

when others =>
end

del flusso!

In questo caso il meccanismo delle eccezioni & usato come strumento di controllo




Il trattamento delle eccezioni in Eiffel

Due modalita:

@ Failure (organized panic): clean up the environment, terminate the call and
report failure to the caller.

© Retry: attempt to change the conditions that led to the exception and to
execute the routine again from the start.

Per trattare il secondo caso, Eiffel introduce il costrutto rescue/retry. Se il corpo
del ‘rescue’ non fa ‘retry’, si ha un failure.

u]

8
I

ul
it

144



div (num: REAL, denom: REAL): REAL
require

denom /= 0
deferred

quasi_inverse (x: REAL): REAL
-- div(1, z) if possible, otherwise 0

local
division_tried: BOOLEAN
do
if not division_tried then
Result := div (1, x)
else
Result := 0
end
rescue
division_tried := True
retry




Correttezza

Per ogni feature (pubblica)

o {PREf N INV'} bodyr {POST¢ A INV'}
o {True} rescuer {INV'}

o {True} retrys {INV A PRE¢}

. 146



	Contratti ed ereditarietà
	Eccezioni


