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Lezione XVI: Design by Contract con Eiffel
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Contratti ed ereditarieta

Il principio di sostituzione di Liskov stabilisce che, perché un oggetto di una classe
derivata soddisfi la relazione is-a, ogni suo metodo:

@ deve essere accessibile a pre-condizioni uguali o piti deboli del metodo della
superclasse;

@ deve garantire post-condizioni uguali o pit forti del metodo della superclasse;
Altrimenti il “figlio” non pud essere sostituito al “padre” senza alterare il sistema.
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Principio di sostituibilita

Le due condizioni sono quindi:

Contratti ed
ereditarieta

'DREparent — PREderived (1)
POS Tderived - POS Tparent (2)

@ (1) in un programma corretto non puo succedere che PREparen: valga e
PRE jerivead NO; I'oggetto evoluto deve funzionare in ogni stato in cui funzionava
I'originale: non puo avere obbligazioni pil stringenti, semmai pit lasche.

@ (2) in un programma corretto non pud succedere che valga POST yeriveds Ma
non POST parent; un stato corretto dell’'oggetto evoluto deve essere corretto
anche quando ci si attende i benefici dell’originale.



Principio di sostituibilita (cont.)

Un modo per garantire che le condizioni (1) e (2) siano automaticamente vere Contratti ed
. y . . . ereditarieta
consiste nell'assumere implicitamente che, se la classe evoluta specifica

esplicitamente una precondizione P e una postcondizione Q, le reali pre- e
post-condizioni siano:

PREderived = PREparent \/ P (3) PREparent — PREderived
POSTderived - POSTparent A Q (4) POSTd&rived Ed POSTparent

In Eiffel: require else € ensure then
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Contratti “astratti”

extend (x: G)
-—- Add “z' at end of list.

require , Stronger precondition. . . ma weaker
space_available: not full L. .

deferred (uguali in realta) in astratto

ensure full: BOOLEAN
one_more: -- Is representation full?
count = old count + 1 -— (Answer: if and only if

end

number of items is equal

to capacity)
full: BOOLEAN

do
-- Is representation full? Result := (count = capacity)
-- (Default: mno) end
do

Result := False
end

Contratti ed
ereditarieta



Problema: i parametri. ..

Contratti ed
@ Animale mangia Cibo (is_.a Cosa)

ereditarieta

@ Mucca (is_a Animale) mangia Erba (is_a Cibo)

Ma questa covarianza € contraria al principio di Liskov perché restringe le

precondizioni. La controvarianza (Mucca mangia Cosa, Sather) e l'invarianza
(Mucca mangia Cibo, Java) vanno bene.

Eiffel invece & covariante. .. (il che, impedendo un controllo di conformita statico,
introduce parecchie complicazioni ~» CATcall, run time type identification. . . ).
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Trattamento delle situazioni anomale

Nel modello di Eiffel hanno un ruolo importante le eccezioni, che vengono trattate
in un modo differente da quello dei pid diffusi linguaggi di programmazione
(Ada-like).

An exception is a run-time event that may cause a routine call to fail (contract
violation). A failure of a routine causes an exception in its caller.




Anti-pattern

sqrt (n: REAL): REAL
do

if x < 0.0 then

raise Negative
else

normal_square_root_computation
end
exception

when Negative =>

print("Negative argumentN")
return

when others =>
end

del flusso!

In questo caso il meccanismo delle eccezioni & usato come strumento di controllo




Il trattamento delle eccezioni in Eiffel

Due modalita:

@ Failure (organized panic): clean up the environment, terminate the call and
report failure to the caller.

© Retry: attempt to change the conditions that led to the exception and to
execute the routine again from the start.

Per trattare il secondo caso, Eiffel introduce il costrutto rescue/retry. Se il corpo
del ‘rescue’ non fa ‘retry’, si ha un failure.
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div (num: REAL, denom: REAL): REAL
require

denom /= 0
deferred

quasi_inverse (x: REAL): REAL
-- div(1, z) if possible, otherwise 0

local
division_tried: BOOLEAN
do
if not division_tried then
Result := div (1, x)
else
Result := 0
end
rescue
division_tried := True
retry




Correttezza

Per ogni feature (pubblica)

o {PREf N INV'} bodyr {POST¢ A INV'}
o {True} rescuer {INV'}

o {True} retrys {INV A PRE¢}
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