
Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

1

Sviluppo software in gruppi di lavoro
complessi1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Anno accademico 2020/21, I semestre

1
cba 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

136

Lezione XVI: Design by Contract con Eiffel

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

137

Contratti ed ereditarietà

Il principio di sostituzione di Liskov stabilisce che, perché un
oggetto di una classe derivata soddisfi la relazione is-a, ogni
suo metodo:

deve essere accessibile a pre-condizioni uguali o piú deboli
del metodo della superclasse;

deve garantire post-condizioni uguali o piú forti del
metodo della superclasse;

Altrimenti il “figlio” non può essere sostituito al “padre” senza
alterare il sistema.

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

138

Principio di sostituibilità

Le due condizioni sono quindi:

PREparent =⇒ PREderived (1)

POSTderived =⇒ POSTparent (2)

(1) in un programma corretto non può succedere che
PREparent valga e PREderived no; l’oggetto evoluto deve
funzionare in ogni stato in cui funzionava l’originale: non
può avere obbligazioni piú stringenti, semmai piú lasche.

(2) in un programma corretto non può succedere che valga
POSTderived ma non POSTparent ; un stato corretto
dell’oggetto evoluto deve essere corretto anche quando ci
si attende i benefici dell’originale.

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

139

Principio di sostituibilità (cont.)

Un modo per garantire che le condizioni (1) e (2) siano
automaticamente vere consiste nell’assumere implicitamente
che, se la classe evoluta specifica esplicitamente una
precondizione P e una postcondizione Q, le reali pre- e
post-condizioni siano:

PREderived = PREparent ∨ P (3)

POSTderived = POSTparent ∧ Q (4)

PREparent =⇒ PREderived

POSTderived =⇒ POSTparent

In Eiffel: require else e ensure then

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

140

Contratti “astratti”

extend (x: G)

-- Add `x' at end of list.

require

space_available: not full

deferred

ensure

one_more:

count = old count + 1

end

full: BOOLEAN

-- Is representation full?

-- (Default: no)

do

Result := False

end

Stronger precondition. . . ma
weaker (uguali in realtà) in
astratto
full: BOOLEAN

-- Is representation full?

-- (Answer: if and only if

-- number of items is equal

-- to capacity)

do

Result := (count = capacity)

end

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

141

Problema: i parametri. . .

Animale mangia Cibo (is a Cosa)

Mucca (is a Animale) mangia Erba (is a Cibo)

Ma questa covarianza è contraria al principio di Liskov perché
restringe le precondizioni. La controvarianza (Mucca mangia
Cosa, Sather) e l’invarianza (Mucca mangia Cibo, Java) vanno
bene.
Eiffel invece è covariante. . . (il che, impedendo un controllo di
conformità statico, introduce parecchie complicazioni
CATcall, run time type identification. . .).

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

142

Trattamento delle situazioni anomale

Nel modello di Eiffel hanno un ruolo importante le eccezioni,
che vengono trattate in un modo differente da quello dei piú
diffusi linguaggi di programmazione (Ada-like).

Exception

An exception is a run-time event that may cause a routine call
to fail (contract violation). A failure of a routine causes an
exception in its caller.

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

143

Anti-pattern

sqrt (n: REAL): REAL

do

if x < 0.0 then

raise Negative

else

normal_square_root_computation

end

exception

when Negative =>

print("Negative argument%N")

return

when others => ..

end

In questo caso il meccanismo delle eccezioni è usato come
strumento di controllo del flusso!

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

144

Il trattamento delle eccezioni in Eiffel

Due modalità:

1 Failure (organized panic): clean up the environment,
terminate the call and report failure to the caller.

2 Retry: attempt to change the conditions that led to the
exception and to execute the routine again from the start.

Per trattare il secondo caso, Eiffel introduce il costrutto
rescue/retry. Se il corpo del ‘rescue’ non fa ‘retry’, si ha un
failure.

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

145

Esempio

div (num: REAL, denom: REAL): REAL

require

denom /= 0

deferred

quasi_inverse (x: REAL): REAL

-- div(1, x) if possible, otherwise 0

local

division_tried: BOOLEAN

do

if not division_tried then

Result := div (1, x)

else

Result := 0

end

rescue

division_tried := True

retry

end

Svigruppo

Monga

Contratti ed
ereditarietà

Eccezioni

146

Correttezza

Per ogni feature (pubblica) f :

{PREf ∧ INV } bodyf {POSTf ∧ INV }
{True} rescuef {INV }
{True} retryf {INV ∧ PREf }

	Contratti ed ereditarietà
	Eccezioni

