Sviluppo software in gruppi di lavoro
complessit

Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, Italia
mattia.monga@unimi.it

Anno accademico 2020/21, | semestre

1 . P -
@®® 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0
Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it 1

Contratti ed ereditarieta

Svigruppo

Monga

Contratti ed
ereditarieta

Eccezioni

Lezione XVI: Design by Contract con Eiffel

Principio di sostituibilita

Svigruppo

Monga

Contratti ed
ereditarieta

Eccezioni

136

Il principio di sostituzione di Liskov stabilisce che, perché un
oggetto di una classe derivata soddisfi la relazione is-a, ogni
suo metodo:
o deve essere accessibile a pre-condizioni uguali o pid deboli
del metodo della superclasse;
o deve garantire post-condizioni uguali o pil forti del
metodo della superclasse;
Altrimenti il “figlio” non puo essere sostituito al “padre” senza
alterare il sistema.

137

Svigruppo

Monga

Contratti ed
ereditarieta

Eccezioni

Le due condizioni sono quindi:

PR Eparent = PR Ederived
POS Tderived — POS Tparent

o (1) in un programma corretto non pud succedere che
PREparent valga € PREgerived nO; I'oggetto evoluto deve

Svigruppo

Monga

Contratti ed
ereditarieta

(1 T
(2)

funzionare in ogni stato in cui funzionava I'originale: non
puo avere obbligazioni pil stringenti, semmai pid lasche.

@ (2) in un programma corretto non pud succedere che valga

POST gerived ma non POST parent; un stato corretto
dell’oggetto evoluto deve essere corretto anche quando
si attende i benefici dell’originale.

ci

138

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Principio di sostituibilita (cont.) 2] Contratti “astratti”

Svigruppo Svigruppo
M M
ones extend (x: G) S
Un modo per garantire che le condizioni (1) e (2) siano Contratti ed "= 4dd "z’ at end of list. Stronger precondition. .. ma Contratti ed
automaticamente vere consiste nell’assumere implicitamente e require ger p e ereditariets
€ st p Feeesen space_available: not full weaker (uguali in realté) in Fe
che, se la classe evoluta specifica esplicitamente una deferred astratto
precondizione P e una postcondizione @, le reali pre- e ensure full: BOOLEAN
izioni si . one_more: :
post-condizioni siano: e comnt - 1 __ Is representation full?
end -— (Answer: if and only if
PRE gerived = PREparent v P (3) PREparent == PREderived -— number of ijems s equal
-— to capactt
POST gerived = POSTparent A Q (4) POSTderivea == POSTparen full: BOOLEAN - pacity
P -- Is representation full? 1t o= (B it
| .) —— (Default: mo) Result := (count = capacity
n Eiffel: require else € ensure then do end
Result := False
end
139 140

Trattamento delle situazioni anomale

Problema: i parametri. ..

Svigruppo Svigruppo
Monga Monga
A . | . Cb . C Contratti ed Com_:rat.ti ed
o Animale mangia Cibo (is-a Cosa) i’i‘i‘:j‘"e‘a Nel modello di Eiffel hanno un ruolo importante le eccezioni, e
o Mucca (is_a Animale) mangia Erba (is_a Cibo) che vengono trattate in un modo differente da quello dei pid
Ma questa covarianza & contraria al principio di Liskov perché diffusi linguaggi di programmazione (Ada-like).
restringe le precondizioni. La controvarianza (Mucca mangia .
Exception

Cosa, Sather) e I'invarianza (Mucca mangia Cibo, Java) vanno
bene.

Eiffel invece & covariante. .. (il che, impedendo un controllo di
conformita statico, introduce parecchie complicazioni ~~
CATcall, run time type identification. . .).

An exception is a run-time event that may cause a routine call
to fail (contract violation). A failure of a routine causes an
exception in its caller.

141 142

Anti-pattern . Il trattamento delle eccezioni in Eiffel

Svigruppo Svigruppo
M M
sqrt (n: REAL): REAL ones e
do Contratti ed Contratti ed
if x < 0.0 then ereditarieta DUe modallt‘a ereditarieta
raise Ne ative Eccezioni Eccezioni
else & @ Failure (organized panic): clean up the environment,
normal_square_root_computation terminate the call and report failure to the caller
end @ Retry: attempt to change the conditions that led to the
exception . . .
P o exception and to execute the routine again from the start.
when Negative =>
print ("Negative argument%N") Per trattare il secondo caso, Eiffel introduce il costrutto
return rescue/retry. Se il corpo del ‘rescue’ non fa ‘retry’, si ha un
when others => .. .
failure.
end
In questo caso il meccanismo delle eccezioni & usato come
strumento di controllo del flusso!
143 144
Esempio Correttezza
div (num: REAL, denom: REAL): REAL S S
require Monga Monga
denom /= 0
/ Contratti ed Contratti ed
deferred ereditarieta ereditarieta
Eccezioni Eccezioni
quasi_inverse (x: REAL): REAL Per ogniféature (pubeca) f:
-- div(1, z) 1f possible, otherwise 0
local o {PREf N INV'} bodyr {POST¢ A INV'}
division_tried: BOOLEAN o {Truel} rescues {INV'}
do
if not division_tried then o {True} retryr {INV A PREf}
Result := div (1, x)
else
Result := 0
end
rescue
division_tried := True
retry

end
145 146

	Contratti ed ereditarietà
	Eccezioni

