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Lezione XVI: Design by Contract con Eiffel
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Contratti ed ereditarietà

Il principio di sostituzione di Liskov stabilisce che, perché un
oggetto di una classe derivata soddisfi la relazione is-a, ogni
suo metodo:

deve essere accessibile a pre-condizioni uguali o piú deboli
del metodo della superclasse;

deve garantire post-condizioni uguali o piú forti del
metodo della superclasse;

Altrimenti il “figlio” non può essere sostituito al “padre” senza
alterare il sistema.
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Principio di sostituibilità

Le due condizioni sono quindi:

PREparent =⇒ PREderived (1)

POSTderived =⇒ POSTparent (2)

(1) in un programma corretto non può succedere che
PREparent valga e PREderived no; l’oggetto evoluto deve
funzionare in ogni stato in cui funzionava l’originale: non
può avere obbligazioni piú stringenti, semmai piú lasche.

(2) in un programma corretto non può succedere che valga
POSTderived ma non POSTparent ; un stato corretto
dell’oggetto evoluto deve essere corretto anche quando ci
si attende i benefici dell’originale.

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it
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Principio di sostituibilità (cont.)

Un modo per garantire che le condizioni (1) e (2) siano
automaticamente vere consiste nell’assumere implicitamente
che, se la classe evoluta specifica esplicitamente una
precondizione P e una postcondizione Q, le reali pre- e
post-condizioni siano:

PREderived = PREparent ∨ P (3)

POSTderived = POSTparent ∧ Q (4)

PREparent =⇒ PREderived

POSTderived =⇒ POSTparent

In Eiffel: require else e ensure then
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Contratti “astratti”

extend (x: G)

-- Add `x' at end of list.

require

space_available: not full

deferred

ensure

one_more:

count = old count + 1

end

full: BOOLEAN

-- Is representation full?

-- (Default: no)

do

Result := False

end

Stronger precondition. . . ma
weaker (uguali in realtà) in
astratto
full: BOOLEAN

-- Is representation full?

-- (Answer: if and only if

-- number of items is equal

-- to capacity)

do

Result := (count = capacity)

end
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Problema: i parametri. . .

Animale mangia Cibo (is a Cosa)

Mucca (is a Animale) mangia Erba (is a Cibo)

Ma questa covarianza è contraria al principio di Liskov perché
restringe le precondizioni. La controvarianza (Mucca mangia
Cosa, Sather) e l’invarianza (Mucca mangia Cibo, Java) vanno
bene.
Eiffel invece è covariante. . . (il che, impedendo un controllo di
conformità statico, introduce parecchie complicazioni  
CATcall, run time type identification. . . ).
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Trattamento delle situazioni anomale

Nel modello di Eiffel hanno un ruolo importante le eccezioni,
che vengono trattate in un modo differente da quello dei piú
diffusi linguaggi di programmazione (Ada-like).

Exception

An exception is a run-time event that may cause a routine call
to fail (contract violation). A failure of a routine causes an
exception in its caller.
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Anti-pattern

sqrt (n: REAL): REAL

do

if x < 0.0 then

raise Negative

else

normal_square_root_computation

end

exception

when Negative =>

print("Negative argument%N")

return

when others => ..

end

In questo caso il meccanismo delle eccezioni è usato come
strumento di controllo del flusso!
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Il trattamento delle eccezioni in Eiffel

Due modalità:

1 Failure (organized panic): clean up the environment,
terminate the call and report failure to the caller.

2 Retry: attempt to change the conditions that led to the
exception and to execute the routine again from the start.

Per trattare il secondo caso, Eiffel introduce il costrutto
rescue/retry. Se il corpo del ‘rescue’ non fa ‘retry’, si ha un
failure.
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Esempio

div (num: REAL, denom: REAL): REAL

require

denom /= 0

deferred

quasi_inverse (x: REAL): REAL

-- div(1, x) if possible, otherwise 0

local

division_tried: BOOLEAN

do

if not division_tried then

Result := div (1, x)

else

Result := 0

end

rescue

division_tried := True

retry

end
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Correttezza

Per ogni feature (pubblica) f :

{PREf ∧ INV } bodyf {POSTf ∧ INV }
{True} rescuef {INV }
{True} retryf {INV ∧ PREf }
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