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Lezione XVI: Design by Contract con Eiffel

Principio di sostituibilita
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Il principio di sostituzione di Liskov stabilisce che, perché un
oggetto di una classe derivata soddisfi la relazione is-a, ogni
suo metodo:
o deve essere accessibile a pre-condizioni uguali o pid deboli
del metodo della superclasse;
o deve garantire post-condizioni uguali o pil forti del
metodo della superclasse;
Altrimenti il “figlio” non puo essere sostituito al “padre” senza
alterare il sistema.
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Le due condizioni sono quindi:

PR Eparent = PR Ederived
POS Tderived — POS Tparent

o (1) in un programma corretto non pud succedere che
PREparent valga € PREgerived nO; I'oggetto evoluto deve
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funzionare in ogni stato in cui funzionava I'originale: non
puo avere obbligazioni pil stringenti, semmai pid lasche.

@ (2) in un programma corretto non pud succedere che valga

POST gerived ma non POST parent; un stato corretto
dell’oggetto evoluto deve essere corretto anche quando
si attende i benefici dell’originale.

ci
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Principio di sostituibilita (cont.) 2 ] Contratti “astratti”
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ones extend (x: G) S
Un modo per garantire che le condizioni (1) e (2) siano Contratti ed "= 4dd "z’ at end of list. Stronger precondition. .. ma Contratti ed
automaticamente vere consiste nell’assumere implicitamente e require ger p e ereditariets
€ st p Feeesen space_available: not full weaker (uguali in realté) in Fe
che, se la classe evoluta specifica esplicitamente una deferred astratto
precondizione P e una postcondizione @, le reali pre- e ensure full: BOOLEAN
izioni si . one_more: :
post-condizioni siano: e comnt - 1 __ Is representation full?
end -— (Answer: if and only if
PRE gerived = PREparent v P (3) PREparent == PREderived -— number of ijems s equal
-— to capactt
POST gerived = POSTparent A Q  (4) POSTderivea == POSTparen full: BOOLEAN - pacity
P -- Is representation full? 1t o= ( B it
| . ) —— (Default: mo) Result := (count = capacity
n Eiffel: require else € ensure then do end
Result := False
end
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Trattamento delle situazioni anomale

Problema: i parametri. ..
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A . | . Cb . C Contratti ed Com_:rat.ti ed
o Animale mangia Cibo (is-a Cosa) i’i‘i‘:j‘"e‘a Nel modello di Eiffel hanno un ruolo importante le eccezioni, e
o Mucca (is_a Animale) mangia Erba (is_a Cibo) che vengono trattate in un modo differente da quello dei pid
Ma questa covarianza & contraria al principio di Liskov perché diffusi linguaggi di programmazione (Ada-like).
restringe le precondizioni. La controvarianza (Mucca mangia .
Exception

Cosa, Sather) e I'invarianza (Mucca mangia Cibo, Java) vanno
bene.

Eiffel invece & covariante. .. (il che, impedendo un controllo di
conformita statico, introduce parecchie complicazioni ~~
CATcall, run time type identification. . .).

An exception is a run-time event that may cause a routine call
to fail (contract violation). A failure of a routine causes an
exception in its caller.
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Anti-pattern . Il trattamento delle eccezioni in Eiffel
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sqrt (n: REAL): REAL ones e
do Contratti ed Contratti ed
if x < 0.0 then ereditarieta DUe modallt‘a ereditarieta
raise Ne ative Eccezioni . . . . Eccezioni
else & @ Failure (organized panic): clean up the environment,
normal_square_root_computation terminate the call and report failure to the caller
end @ Retry: attempt to change the conditions that led to the
exception . . .
P o exception and to execute the routine again from the start.
when Negative =>
print ("Negative argument%N") Per trattare il secondo caso, Eiffel introduce il costrutto
return rescue/retry. Se il corpo del ‘rescue’ non fa ‘retry’, si ha un
when others => .. .
failure.
end
In questo caso il meccanismo delle eccezioni & usato come
strumento di controllo del flusso!
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Esempio Correttezza
div (num: REAL, denom: REAL): REAL S S
require Monga Monga
denom /= 0
/ Contratti ed Contratti ed
deferred ereditarieta ereditarieta
Eccezioni Eccezioni
quasi_inverse (x: REAL): REAL Per ogniféature (pubeca) f:
-- div(1, z) 1f possible, otherwise 0
local o {PREf N INV'} bodyr {POST¢ A INV'}
division_tried: BOOLEAN o {Truel} rescues {INV'}
do
if not division_tried then o {True} retryr {INV A PREf}
Result := div (1, x)
else
Result := 0
end
rescue
division_tried := True
retry

end
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