Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, Italia

mattia.monga@unimi.it

Anno accademico 2020/21, | semestre

@®® 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0 Internazionale
http://creativecommons.org/licenses/by-sa/4.0/deed.it

[m]

=

Dac 1


mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lezione XV: Design by Contract con Eiffel

o <5 =» «z» = wac 129



programmazione” :

Eiffel & esplicitamente progettato come linguaggio “di progetto”, non solo “di
367]

“specify, design, implement and modify quality software” [Ecma standard

“Programmazione in grande” con oggetti, derivati da classi organizzate in gerarchie
ai loro client.

di ereditarieta e raggruppate in cluster, che forniscono feature (command o query)

130



Organizzazione delle asserzioni

@ pre/post-condizioni sulle feature (require, ensure)
e Invarianti di classe (invariant)

@ asserzioni (check)

] |00p invariant (:Erom .. invariant .. until .. variant .. loop .. end)

u]
8
I
ul
it

2ac 131



Il supporto del linguaggio

@ invarianti di classe sono condizioni che devono essere vere in ogni momento
“critico”, ossia osservabile dall'esterno. In pratica e come se facessero parte di
ogni pre- e post-condizione.

@ & possibile avere un supporto run-time alle violazioni: se una condizione non
vale viene sollevata un’eccezione

@ L'eccezione porta il sistema nel precedente stato stabile ed & possibile
e terminare con un fallimento
e riprovare

132




Demo

class ROOT_TEST_STABLE_STATES
create make
feature {NONE}
secret: BOOLEAN
feature {ANY}
make -- root class cannot have preconditions
-- require ok_pre("make")
do
print ("Executing makeN")
mycommand; secret := TRUE
ensure ok_post("make")
end
mycommand
require ok_pre("mycommand")
do
print ("Executing mycommandN")
secret := FALSE; myother("1"); secret := TRUE
—-- But what happens if myother is a "client"?
-- secret := FALSE; Current.myother("2"); secret := TRUE
ensure ok_post("mycommand")
end
myother (s: STRING)
require ok_pre("myother")
do
print("Executing myother " + s + "%N")
ensure ok_post("myother")
end
ok_inv: BOOLEAN do print("Checking ok_inv!Y%N"); Result := True; end
ok_pre (w: STRING): BOOLEAN do print("Checking ok_pre @ " + w + "JN"); Result
ok_post (w: STRING): BOOLEAN do print("Checking ok _post @

:= True; end
"4 w + "YN"): Result :=ITrue, [éhd =

133



create make

feature gcd (x: INTEGER; y: INTEGER): INTEGER

require
positive_parms: x >= 0 and y >= 0
not_zero: x /=0 ory /=0

local t: INTEGER

do
if x = 0 or y = O then Result := x.max (y)
else
from Result := x; t :=y
invariant
positive_result: Result > 0
positive_t: t > O
ged_inv: mathged(x, y) = mathgcd(Result, t)
until Result =t
loop
if Result > t then Result := Result - t
else t := t - Result
end
variant t.max(Result)
end
end
ensure

positive_ris: Result > O

dividex: x = 0 or else x.integer_remainder(Result) = 0

dividey: y = 0 or else y.integer_remainder(Result) = 0

Result = x.min(y) or else across ((Result+1).to_integer |..| x.min(y)) as ic
all (x.integer_remainder(ic.item) /= 0
or y.integer_remainder(ic.item) /= 0) end

134



make do

print("Ris: " + gcd(126,294).out + " IN")
print("Ris: " + gcd(0,294).out + " IN")
end

mathgecd(x,y: INTEGER):INTEGER do
from Result := x.min(y)
until y.integer_remainder (Result) = 0
and then x.integer_remainder(Result) = 0
loop
Result := Result - 1




Procedurale vs. Dichiarativo

Spesso si scrivono le “stesse” cose due volte:
do
balance := balance - x

ensure
balance
@ Implementazione e specifica
@ How & What

old balance - x

Il client & responsabile delle precondizioni, il fornitore di postcondizioni e invarianti.

136



	Asserzioni
	Eiffel
	What & How


