
Svigruppo

Monga

Asserzioni

Eiffel

What & How

1

Sviluppo software in gruppi di lavoro
complessi1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Anno accademico 2020/21, I semestre

1
cba 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

Svigruppo

Monga

Asserzioni

Eiffel

What & How

129

Lezione XV: Design by Contract con Eiffel

Svigruppo

Monga

Asserzioni

Eiffel

What & How

130

Eiffel

Eiffel è esplicitamente progettato come linguaggio “di
progetto”, non solo “di programmazione”:

“specify, design, implement and modify quality
software” [Ecma standard 367]

“Programmazione in grande” con oggetti, derivati da classi
organizzate in gerarchie di ereditarietà e raggruppate in cluster,
che forniscono feature (command o query) ai loro client.

Svigruppo

Monga

Asserzioni

Eiffel

What & How

131

Organizzazione delle asserzioni

pre/post-condizioni sulle feature (require, ensure)

Invarianti di classe (invariant)

asserzioni (check)

loop invariant
(from .. invariant .. until .. variant .. loop .. end)

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Svigruppo

Monga

Asserzioni

Eiffel

What & How

132

Il supporto del linguaggio

invarianti di classe sono condizioni che devono essere
vere in ogni momento “critico”, ossia osservabile
dall’esterno. In pratica e come se facessero parte di ogni
pre- e post-condizione.

è possibile avere un supporto run-time alle violazioni: se
una condizione non vale viene sollevata un’eccezione

L’eccezione porta il sistema nel precedente stato stabile ed
è possibile

terminare con un fallimento
riprovare

Demo

class ROOT_TEST_STABLE_STATES

create make

feature {NONE}

secret: BOOLEAN

feature {ANY}

make -- root class cannot have preconditions

-- require ok_pre("make")

do

print("Executing make%N")

mycommand; secret := TRUE

ensure ok_post("make")

end

mycommand

require ok_pre("mycommand")

do

print("Executing mycommand%N")

secret := FALSE; myother("1"); secret := TRUE

-- But what happens if myother is a "client"?

-- secret := FALSE; Current.myother("2"); secret := TRUE

ensure ok_post("mycommand")

end

myother (s: STRING)

require ok_pre("myother")

do

print("Executing myother " + s + "%N")

ensure ok_post("myother")

end

ok_inv: BOOLEAN do print("Checking ok_inv!%N"); Result := True; end

ok_pre (w: STRING): BOOLEAN do print("Checking ok_pre @ " + w + "%N"); Result := True; end

ok_post (w: STRING): BOOLEAN do print("Checking ok_post @ " + w + "%N"); Result := True; end

invariant ok_inv

end 133

Svigruppo

Monga

Asserzioni

Eiffel

What & How

134

class GCD

create make

feature gcd (x: INTEGER; y: INTEGER): INTEGER

require

positive_parms: x >= 0 and y >= 0

not_zero: x /= 0 or y /= 0

local t: INTEGER

do

if x = 0 or y = 0 then Result := x.max (y)

else

from Result := x; t := y

invariant

positive_result: Result > 0

positive_t: t > 0

gcd_inv: mathgcd(x, y) = mathgcd(Result, t)

until Result = t

loop

if Result > t then Result := Result - t

else t := t - Result

end

variant t.max(Result)

end

end

ensure

positive_ris: Result > 0

dividex: x = 0 or else x.integer_remainder(Result) = 0

dividey: y = 0 or else y.integer_remainder(Result) = 0

Result = x.min(y) or else across ((Result+1).to_integer |..| x.min(y)) as ic

all (x.integer_remainder(ic.item) /= 0

or y.integer_remainder(ic.item) /= 0) end

end

make do

Svigruppo

Monga

Asserzioni

Eiffel

What & How

135

print("Ris: " + gcd(126,294).out + " %N")

print("Ris: " + gcd(0,294).out + " %N")

end

mathgcd(x,y: INTEGER):INTEGER do

from Result := x.min(y)

until y.integer_remainder(Result) = 0

and then x.integer_remainder(Result) = 0

loop

Result := Result - 1

end

end

end

Svigruppo

Monga

Asserzioni

Eiffel

What & How

136

Procedurale vs. Dichiarativo

Spesso si scrivono le “stesse” cose due volte:

do

balance := balance - x

ensure

balance = old balance - x

Implementazione e specifica

How & What

Il client è responsabile delle precondizioni, il fornitore di
postcondizioni e invarianti.

	Asserzioni
	Eiffel
	What & How

