Sviluppo software in gruppi di lavoro
complessit

Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, Italia
mattia.monga@unimi.it

Anno accademico 2020/21, | semestre

1 . P -
@®® 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0
Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it 1

Eiffel

Eiffel & esplicitamente progettato come linguaggio "di
progetto”, non solo “di programmazione”:
“specify, design, implement and modify quality
software” [Ecma standard 367]

“Programmazione in grande” con oggetti, derivati da classi
organizzate in gerarchie di ereditarieta e raggruppate in cluster,
che forniscono feature (command o query) ai loro client.

130

Svigruppo
Monga

Asserzioni

Eiffel
What & How

Svigruppo

Monga

Asserzioni

Eiffel

What & How

Lezione XV: Design by Contract con Eiffel

Organizzazione delle asserzioni

Qo pre/post—condizioni sulle feature (require, ensure)

o Invarianti di classe (invariant)

o asserzioni (check)

o loop invariant

(from ..

invariant

. until

. variant

loop ..

end)

129

131

Svigruppo

Monga

Asserzioni

Eiffel
What & How

Svigruppo
Monga

Asserzioni

Eiffel

What & How

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Il supporto del linguaggio

Demo

o invarianti di classe sono condizioni che devono essere
vere in ogni momento ‘critico”, ossia osservabile
dall'esterno. In pratica e come se facessero parte di ogni
pre- e post-condizione.

o & possibile avere un supporto run-time alle violazioni: se
una condizione non vale viene sollevata un’eccezione
o L’eccezione porta il sistema nel precedente stato stabile ed
€ possibile
o terminare con un fallimento
o riprovare

132

create make
feature gcd (x: INTEGER; y: INTEGER): INTEGER
require
positive_parms: x >= 0 and y >= 0
not_zero: x /= 0 ory /=0

local t: INTEGER
do
if x = 0 or y = 0 then Result := x.max (y)
else
from Result := x; t :=y
invariant

positive_result: Result > 0
positive_t: t > O
gcd_inv: mathged(x, y) = mathgcd(Result, t)
until Result =t
loop
if Result > t then Result
else t := t - Result
end
variant t.max(Result)
end
end
ensure
positive_ris: Result > O
dividex: x = 0 or else x.integer_remainder(Result) =0
dividey: y = 0 or else y.integer_remainder(Result) = 0
Result = x.min(y) or else across ((Result+1).to_integer |..| x.min(y)) as ic
all (x.integer_remainder(ic.item) /= 0
or y.integer_remainder(ic.item) /= 0) end
end

:= Result - t

make do

134

class ROOT_TEST_STABLE_STATES

Svigruppo create make
feature {NONE}
Monga secret: BOOLEAN

feature {ANY}

Asserzioni make -- root class cannot have preconditions

- " "
Eiffel - require ok_pre("make")
What & How

print ("Executing makeN")
mycommand; secret := TRUE
ensure ok_post("make")
end
mycommand
require ok_pre("mycommand")
do
print ("Executing mycommand’N")
secret := FALSE; myother("1"); secret := TRUE
—-- But what happens if myother is a "client"?
-- secret
ensure ok_post ("mycommand")
end
myother (s: STRING)
require ok_pre("myother")
do
print ("Executing myother " + s + "%N")
ensure ok_post("myother")
end
ok_inv: BOOLEAN do print("Checking ok_inv!%N"); Result

ok_pre (w: STRING): BOOLEAN do print("Checking ok_pre @
ok_post (w: STRING): BOOLEAN do print("Checking ok_post

invariant ok_inv
end

Svigruppo

Monga

Asserzioni

Eiffel
What & How print("Ris: " + gcd(126,294).out + " %N")
print("Ris: " + gecd(0,294).out + " %N")

end

mathgcd(x,y: INTEGER):INTEGER do
from Result := x.min(y)
until y.integer_remainder(Result) = 0
and then x.integer_remainder (Result) = 0
loop

Result := Result - 1

:= FALSE; Current.myother("2"); secret :=

TRUE

:= True; end

" 4+ w + "JN"); Result := True; end
@ " + w + "JN"); Result := True; end

Svigruppo

Monga

Asserzioni

Eiffel

What & How

135

Procedurale vs. Dichiarativo

Svigruppo
Monga
Asserzioni
i A " " Eiffel
Spesso si scrivono le “stesse” cose due volte: What & How
do ensure
balance := balance - x balance = old balance - x
o Implementazione e specifica
o How & What

Il client & responsabile delle precondizioni, il fornitore di
postcondizioni e invarianti.

136

	Asserzioni
	Eiffel
	What & How

