
Svigruppo

Monga

Divisione del
lavoro

Asserzioni

1

Sviluppo software in gruppi di lavoro
complessi1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Anno accademico 2020/21, I semestre

1
cba 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

Svigruppo

Monga

Divisione del
lavoro

Asserzioni

112

Lezione XIII: Documentazione dei componenti

Svigruppo

Monga

Divisione del
lavoro

Asserzioni

113

La suddivisione del lavoro sw

Come suddividire il lavoro, senza la continua necessità di
coordinazione?
Perché un sottogruppo di lavoro possa procedere in
“isolamento” dovrebbe conoscere i componenti sviluppati da
altri (o che altri svilupperanno). Cioè il loro comportamento

in situazioni fisiologiche (correttezza)

in situazioni patologiche (robustezza)

A questo scopo è quindi necessario specificare il funzionamento
del sistema

Svigruppo

Monga

Divisione del
lavoro

Asserzioni

114

Correctness & robustness

IEEE Software and Systems Engineering Vocabulary (http:
//pascal.computer.org/sev_display/index.action):

Correctness

The degree to which a system or component is free from faults
in its specification, design, and implementation.

Robustness

The degree to which a system or component can function
correctly in the presence of invalid inputs or stressful
environmental conditions.

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it
http://pascal.computer.org/sev_display/index.action
http://pascal.computer.org/sev_display/index.action


Svigruppo

Monga

Divisione del
lavoro

Asserzioni

115

What & How

Una specifica è una descrizione delle proprietà del
marchingegno/componente utilizzato per risolvere un problema
(a sua volta definito dai requisiti di progetto).
Le specifiche, perciò, sono una descrizione delle parti che
compongono la soluzione: le modalità computazionali però
sono lasciate impredicate.

What vs. How

Svigruppo

Monga

Divisione del
lavoro

Asserzioni

116

Specifiche nel lavoro di gruppo

Le specifiche costituiscono naturalmente l’interfaccia fra gruppi
che si suddividono l’implementazione di un sistema complesso.

Il coordinamento rimane necessario a livello di specifica:
ma accordarsi su cosa sembra piú facile che sul come;

I sottogruppi avranno la responsabilità di aderire alle
specifiche nelle loro implementazioni.

Svigruppo

Monga

Divisione del
lavoro

Asserzioni

117

La suddivisione non è isolamento. . .

Perry & Evangelist (nel 1985) identificano una serie di
“Interface Fault” che rimangono sostanzialmente comuni anche
nei sistemi complessi di oggi.

Construction (mismatch
interface/implementation).

Inadequate functionality.

Disagreements on
functionality.

Misuse of interface.

Data structure alteration.

Violation of data
constraints.

Initialization/value errors.

Inadequate error
processing.

Inadequate postprocessing
(resource deallocation).

Inadequate interface
support.

Changes/Added
functionality.

Coordination of changes.

Timing/performance
problems.

Svigruppo

Monga

Divisione del
lavoro

Asserzioni

118

Meccanismi per monitorare l’aderenza alle
specifiche

Il meccanismo base per monitorare/verificare l’aderenza di una
implementazione alle specifiche (e ridurre gli interface fault):

Assertion

(1) a logical expression specifying a program state that must
exist or a set of conditions that program variables must satisfy
at a particular point during program execution. (2) a function
or macro that complains loudly if a design assumption on
which the code is based is not true.



Svigruppo

Monga

Divisione del
lavoro

Asserzioni

119

assert (3)

NAME

assert - abort the program if assertion is false

SYNOPSIS

#include <assert.h>

void assert(scalar expression);

DESCRIPTION

If the macro NDEBUG was defined at the moment <assert.h>

was last included, the macro assert() generates no code, and

hence does nothing at all. Otherwise, the macro assert() prints

an error message to standard error and terminates the program

by calling abort(3) if expression is false (i.e., compares equal to zero).

CONFORMING TO

POSIX.1-2001, C89, C99. In C89, expression is required to be of type int.

BUGS

assert() is implemented as a macro; if the expression tested

has side-effects, program behavior will be different depending

on whether NDEBUG is defined. This may create Heisenbugs

which go away when debugging is turned on.

Svigruppo

Monga

Divisione del
lavoro

Asserzioni

120

Ubiquo

Ormai presente in quasi tutti i linguaggi nativo o nelle librerie
standard:

Java assert

Python assert

PHP assert

Javascript console.assert (non in Explorer. . . )

. . .

Svigruppo

Monga

Divisione del
lavoro

Asserzioni

121

Usi delle asserzioni

È utile ragionare su “pattern” di asserzioni, spesso codificati in
assertion languages/libraries.
D. S. Rosenblum, “Towards a Method of Programming with
Assertions”, ICSE 1992 (Most influential paper award ICSE
2002).
Descrive un preprocessore (APP) per produrre asserzioni: il
preprocessore lavora su speciali “commenti” /*@ @*/ :

assume

promise

return

assert

Svigruppo

Monga

Divisione del
lavoro

Asserzioni

122

Esempi

int square_root(int x);

/*@

assume x >= 0;

return y where y >= 0;

return y where y*y <= x

&& x < (y+1)*(y+1);

@*/

void swap(int* x, int* y);

/*@

assume x && y && x != y;

promise *x == in *y;

promise *y == in *x;

@*/

void swap(int* x, int* y) {

*x = *x + *y;

*y = *x - *y;

/*@ assert *y == in *x; @*/

*x = *x - *y;

}



Svigruppo

Monga

Divisione del
lavoro

Asserzioni

123

Classificazione delle asserzioni

Consistency between arguments

Dependency of return value on arguments

Effect on global state/Frame specifications

The context in which a function is called

Subrange membership of data/Enumeration membership
of data

Non-null pointers

Condition of the else part of complex if (and switch)

Consistency between related data

Intermediate summary of processing


	Divisione del lavoro
	Asserzioni


