Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, Italia

mattia.monga@unimi.it

Anno accademico 2020/21, | semestre

@®® 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0 Internazionale
http://creativecommons.org/licenses/by-sa/4.0/deed.it

[m]

=

Do 1

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lezione VIII: Dependency hell

Dove siamo?

la divisione del lavoro

Come ci si organizza? “The tar pit” Sviluppare software necessita sforzi collettivi

Riassunto
coordinati: gruppi di lavoro complessi con obiettivi in rapida
evoluzione e innumerevoli concern intrecciati rendono molto difficile
Come si gestiscono i manufatti? La produzione del software consiste
principalmente nella modifica di file: i sistemi di configuration
revisioni

management permettono di tenere sotto controllo I'evoluzione delle

Collaborare in un gruppo di lavoro complesso

La collaborazione ordinata richiede spesso parecchio lavoro aggiuntivo.

@ Un caso in “famiglia”: https://github.com/scipy/scipy/pull/6658

@ Anche un programmatore eccezionalmente dotato come Sebastiano Vigna,

deve spendere parecchie energie per incastrare il proprio contributo nello sforzo
collettivo.

@ Le policy aziendali (o di “kibbutz") sono ormai diventate una componente
essenziale del lavoro dello sviluppatore

Riassunto

https://github.com/scipy/scipy/pull/6658

Dipendenze

produttore:

@ device driver

Qualsiasi applicazione dipende da componenti software fuori dal controllo del
@ kernel

@ librerie di sistema

Dipendenze
@ librerie di supporto

Gnome-calculator

$ 1dd $(which gnome-calculator)
libgtk-3.s0.0 => /1ib/x86_64-linux-gnu/libgtk-3.s0.0 (0x00007f1bbc404000)

libgdk-3.s0.0 => /1ib/x86_64-1linux-gnu/libgdk-3.s0.0 (0x00007£f1bbc10d4000)

libpango-1.0.s0.0 => /1ib/x86_64-1linux-gnu/libpango-1.0.s0.0 (0x00007f1bbbec1000)
libatk-1.0.50.0 => /1ib/x86_64-1linux-gnu/libatk-1.0.50.0 (0x00007f1bbbc9b000) Dipendenze
libgio-2.0.s0.0 => /1ib/x86_64-1linux-gnu/libgio-2.0.s0.0 (0x00007f1bbb904000)
libgobject-2.0.s0.0 => /1ib/x86_64-1linux-gnu/libgobject-2.0.s0.0 (0x00007f1bbb6b1000
libglib-2.0.s0.0 => /1ib/x86_64-linux-gnu/libglib-2.0.s0.0 (0x00007£f1bbb39d000)
libcalculator.so => /usr/1ib/x86_64-linux-gnu/gnome-calculator/libcalculator.so (0xO
libm.so.6 => /1ib/x86_64-1linux-gnu/libm.so.6 (0x00007f1bba884000)
libpangocairo-1.0.s0.0 => /1ib/x86_64-1linux-gnu/libpangocairo-1.0.s0.0 (0x00007f1bba
libcairo.so.2 => /1ib/x86_64-1linux-gnu/libcairo.so.2 (0x00007f1bba363000)
libgdk_pixbuf-2.0.s0.0 => /1ib/x86_64-1linux-gnu/libgdk_pixbuf-2.0.s0.0 (0x00007f1bba
libxml2.s0.2 => /1ib/x86_64-linux-gnu/libxml2.s0.2 (0x00007£1bb9d85000)
libgmodule-2.0.s0.0 => /1ib/x86_64-1linux-gnu/libgmodule-2.0.s0.0 (0x00007f1bb9b81000

In totale 83 componenti!

Dipendenze di sviluppo

Va un po’ meglio con i linguaggi interpretati: alle dipendenze di sistema
generalmente sopperisce |'interprete (ma non sempre: con la macchina virtuale Java

Dipendenze

per esempio pud essere piuttosto faticoso utilizzare specifiche librerie grafiche).
@ Un’applicazione usa librerie per non ‘reinventare la ruota’
o Evitare la sindrome NIH

@ Ma anche evitare le dipendenze inutili: https://redd.it/4bjss2

Le dipendenze vanno il pit possibile esplicitamente documentate e motivate

https://redd.it/4bjss2

Dipendenze e pacchettizzazioni

Abbiamo gia discusso che distributori come Debian devono gran parte del loro
successo alla ricca documentazione delle dipendenze:

Dipendenze
@ Ogni pacchetto & regolato da un control file, che specifica le caratteristiche
@ le dipendenze: Depends, Recommends, Suggests, Enhances, Pre-Depends

o gli script da eseguire per mantenere I'integrita del sistema: preinst, postinst,
prerm, postrm

@ la priorita: Required, Important, Standard, Optional, Extra

Il “packaging” nello sviluppo

(DLL hell)

Il problema esiste non solo a livello di sistema, ma anche di singola applicazione.
e Riproducibilita

Il “packaging’
nello sviluppo

@ Ambienti di “scripting” per i quali non sono possibili compilazioni “statiche”
@ Gestione di installazioni concorrenti di diverse versioni

Esaminiamo il caso di Python, ma considerazioni analoghe valgono ormai per

moltissime piattaforme di sviluppo (npm, stack, ...).
Onnipresenti poi i sistemi di distribuzione centralizzata:

PHP Pear
CPAN Perl
CTAN TeX
MELPA Emacs’

Il “packaging”
nello sviluppo

Python: documentazione delle dipendenze

Python fornisce un meccanismo standard per documentare le dipendenze di
un'applicazione: setup.py

from setuptools import setup

Il “packaging”
nello sviluppo

setup(
name="MyLibrary",
version="1.0",
install_requires=[
"requests",
"berypt",

—
-

u]
Q
I
ul
i

Python: distribuzione centralizzata

Esistono poi dei punti di distribuzione centralizzata: per esempio PYPI (Python
Package Index https://pypi.python.org/pypi)
E naturalmente un package manager: pip install requests

Il “packaging”
nello sviluppo

https://pypi.python.org/pypi

Python: virtualenv

Ma sempre pil spesso non vogliamo installazioni “system-wide”, ma “user-wide" o

addirittura “application-specific”.

$ cd “/usr/local/src/app/ ['packaging”
$ virtualenv env DAL
New python executable in env/bin/python

Installing setuptools............ done.

Installing pip............... done.

$ pip

$ python

(Con source ./env/activate si pud semplificare la chiamata dei programmi)

u]
Q
I
ul
i

Python: riproducibilita

$ pip install pippo

$ pip freeze > requirements.txt

$ pip install -r requirements.txt

Il “packaging”
nello sviluppo

Virtualenv: problemi

@ Puo non essere banale tenere aggiornato un virtualenv ~» pipenv
e Source distribution vs. Wheel (egg)

Il “packaging”
nello sviluppo

@ Moltissime duplicazioni ~» virtualenvwrapper

@ Sistemi piu generali, cross-platform: CONDA

u]
Q
I
ul
i

Dependency hell (cont.)

Versionamento semantico http://semver.org/spec/v2.0.0.html

o Numero di versione con tre token MAJOR.MINOR.PATCH nelly st

nello sviluppo

@ MAJOR cambia quando ci sono cambiamenti incompatibili nelle API

@ MINOR cambia con nuove funzionalita (ma backwards-compatible)
@ PATCH solo bugfix

http://semver.org/spec/v2.0.0.html

	Riassunto
	Dipendenze
	Il ``packaging'' nello sviluppo

