
Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

1

Sviluppo software in gruppi di lavoro
complessi1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Anno accademico 2020/21, I semestre

1
cba 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

65

Lezione VIII: Dependency hell

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

66

Dove siamo?

Come ci si organizza? “The tar pit” Sviluppare software
necessita sforzi collettivi coordinati: gruppi di
lavoro complessi con obiettivi in rapida evoluzione
e innumerevoli concern intrecciati rendono molto
difficile la divisione del lavoro

Come si gestiscono i manufatti? La produzione del software
consiste principalmente nella modifica di file: i
sistemi di configuration management permettono
di tenere sotto controllo l’evoluzione delle
revisioni

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

67

Collaborare in un gruppo di lavoro complesso

La collaborazione ordinata richiede spesso parecchio lavoro
aggiuntivo.

Un caso in “famiglia”:
https://github.com/scipy/scipy/pull/6658

Anche un programmatore eccezionalmente dotato come
Sebastiano Vigna, deve spendere parecchie energie per
incastrare il proprio contributo nello sforzo collettivo.

Le policy aziendali (o di “kibbutz”) sono ormai diventate
una componente essenziale del lavoro dello sviluppatore

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it
https://github.com/scipy/scipy/pull/6658

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

68

Dipendenze

Qualsiasi applicazione dipende da componenti software fuori
dal controllo del produttore:

kernel

device driver

librerie di sistema

librerie di supporto

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

69

Gnome-calculator

$ ldd $(which gnome-calculator)

libgtk-3.so.0 => /lib/x86_64-linux-gnu/libgtk-3.so.0 (0x00007f1bbc404000)

libgdk-3.so.0 => /lib/x86_64-linux-gnu/libgdk-3.so.0 (0x00007f1bbc10d000)

libpango-1.0.so.0 => /lib/x86_64-linux-gnu/libpango-1.0.so.0 (0x00007f1bbbec1000)

libatk-1.0.so.0 => /lib/x86_64-linux-gnu/libatk-1.0.so.0 (0x00007f1bbbc9b000)

libgio-2.0.so.0 => /lib/x86_64-linux-gnu/libgio-2.0.so.0 (0x00007f1bbb904000)

libgobject-2.0.so.0 => /lib/x86_64-linux-gnu/libgobject-2.0.so.0 (0x00007f1bbb6b1000)

libglib-2.0.so.0 => /lib/x86_64-linux-gnu/libglib-2.0.so.0 (0x00007f1bbb39d000)

libcalculator.so => /usr/lib/x86_64-linux-gnu/gnome-calculator/libcalculator.so (0x00007f1bbb145000)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f1bba884000)

libpangocairo-1.0.so.0 => /lib/x86_64-linux-gnu/libpangocairo-1.0.so.0 (0x00007f1bba677000)

libcairo.so.2 => /lib/x86_64-linux-gnu/libcairo.so.2 (0x00007f1bba363000)

libgdk_pixbuf-2.0.so.0 => /lib/x86_64-linux-gnu/libgdk_pixbuf-2.0.so.0 (0x00007f1bba140000)

libxml2.so.2 => /lib/x86_64-linux-gnu/libxml2.so.2 (0x00007f1bb9d85000)

libgmodule-2.0.so.0 => /lib/x86_64-linux-gnu/libgmodule-2.0.so.0 (0x00007f1bb9b81000)

...

In totale 83 componenti!

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

70

Dipendenze di sviluppo

Va un po’ meglio con i linguaggi interpretati: alle dipendenze
di sistema generalmente sopperisce l’interprete (ma non
sempre: con la macchina virtuale Java per esempio può essere
piuttosto faticoso utilizzare specifiche librerie grafiche).

Un’applicazione usa librerie per non ‘reinventare la ruota’

Evitare la sindrome NIH

Ma anche evitare le dipendenze inutili:
https://redd.it/4bjss2

Le dipendenze vanno il più possibile esplicitamente
documentate e motivate

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

71

Dipendenze e pacchettizzazioni

Abbiamo già discusso che distributori come Debian devono
gran parte del loro successo alla ricca documentazione delle
dipendenze:

Ogni pacchetto è regolato da un control file, che specifica
le caratteristiche

le dipendenze: Depends, Recommends, Suggests,
Enhances, Pre-Depends

gli script da eseguire per mantenere l’integrità del sistema:
preinst, postinst, prerm, postrm

la priorità: Required, Important, Standard, Optional, Extra

https://redd.it/4bjss2

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

72

Il “packaging” nello sviluppo

Il problema esiste non solo a livello di sistema, ma anche di
singola applicazione. (DLL hell)

Riproducibilità

Ambienti di “scripting” per i quali non sono possibili
compilazioni “statiche”

Gestione di installazioni concorrenti di diverse versioni

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

73

Python

Esaminiamo il caso di Python, ma considerazioni analoghe
valgono ormai per moltissime piattaforme di sviluppo (npm,
stack, . . .).
Onnipresenti poi i sistemi di distribuzione centralizzata:

PHP Pear

CPAN Perl

CTAN TEX

MELPA Emacs ’

. . .

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

74

Python: documentazione delle dipendenze

Python fornisce un meccanismo standard per documentare le
dipendenze di un’applicazione: setup.py

from setuptools import setup

setup(

name="MyLibrary",

version="1.0",

install_requires=[

"requests",

"bcrypt",

],

...

)

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

75

Python: distribuzione centralizzata

Esistono poi dei punti di distribuzione centralizzata: per
esempio PYPI (Python Package Index
https://pypi.python.org/pypi)
E naturalmente un package manager: pip install requests

https://pypi.python.org/pypi

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

76

Python: virtualenv

Ma sempre piú spesso non vogliamo installazioni
“system-wide”, ma “user-wide” o addirittura
“application-specific”.

$ cd ~/usr/local/src/app/

$ virtualenv env

New python executable in env/bin/python

Installing setuptools............done.

Installing pip...............done.

$ pip

$ python

(Con source ./env/activate si può semplificare la chiamata
dei programmi)

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

77

Python: riproducibilità

$ pip install pippo

$ pip freeze > requirements.txt

$ pip install -r requirements.txt

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

78

Virtualenv: problemi

Può non essere banale tenere aggiornato un virtualenv

 pipenv

Source distribution vs. Wheel (egg)

Moltissime duplicazioni virtualenvwrapper

Sistemi più generali, cross-platform: conda

Svigruppo

Monga

Riassunto

Dipendenze

Il “packaging”
nello sviluppo

79

Dependency hell (cont.)

Versionamento semantico
http://semver.org/spec/v2.0.0.html

Numero di versione con tre token MAJOR.MINOR.PATCH

MAJOR cambia quando ci sono cambiamenti incompatibili
nelle API

MINOR cambia con nuove funzionalità (ma
backwards-compatible)

PATCH solo bugfix

http://semver.org/spec/v2.0.0.html

	Riassunto
	Dipendenze
	Il ``packaging'' nello sviluppo

