Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, Italia

mattia.monga@unimi.it

Anno accademico 2020/21, | semestre

@®® 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0 Internazionale
http://creativecommons.org/licenses/by-sa/4.0/deed.it

[m]

=

Dac 1

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lezione V: Gruppi di lavoro agili

| veri punti chiave

@ Team piccoli e auto-organizzati, senza manager tradizionali, ma facilitatori

| punti chiave
e L L . . . TN !
o Rifiuto di azioni e decisioni big upfront, sviluppo iterativo aperto alle variazioni EEEEEEEE

. , . agili
in corso d’'opera (rigorosamente regolate)

@ Misura e controllo del processo di sviluppo, con pianificazioni con orizzonti
temporali e funzionali ridotti

o Enfasi sul testing: non solo come verifica & convalida, ma come supporto alla
progettazione, allo sviluppo e alla gestione delle variazioni

La parte piu problematica e la partecipazione della committenza, che infatti &
interpretati in maniera molto diversa dai vari approcci agili.

Semplicita e minimalismo

@ You aren't gonna need it (YAGNI): non pensare né implementare una
funzionalita finché non & davvero necessaria; realizzare la cosa pili semplice
che puo funzionare.

e E in esplicito contrasto con il principio dell'ingegneria del sw classica “Design
for change”: se il cambiamento/adattabilita non & adeguatamente progettato
costera troppo.

u]
Q
I
ul
i

User stories e test

“As a

| want <business_functionality> so that
<business_justification>"
assert_equal (fizzbuzz(1),1)

dipendenze. ..

@ Invece di requisiti, si usano storie d'uso, senza casi eccezionali, evidenza delle
intensive. . .

@ Invece di specifiche, si usano casi di test, con descrizioni estensive anziché

http://www.scrumdesk.com/Download/Documents/AgileResources/
ScrumGuidelines.pdf

@ 7+ 2 membri, product owner, scrum master
@ Riunioni periodiche con scopi diversi, daily stand-up

@ |l product owner: interfaccia col cliente/committente, fissa le priorita in base
opportunita e rischi di business, gestisce il backlog

@ Lo scrum master: cura il supporto al lavoro del gruppo, elimina gli
impedimenti, fa rispettare le regole

o Gli altri: stimano la complessita del lavoro, identificano i rischi, dimostrano il
progresso del prodotto

u]
Q
I
ul
i

http://www.scrumdesk.com/Download/Documents/AgileResources/ScrumGuidelines.pdf
http://www.scrumdesk.com/Download/Documents/AgileResources/ScrumGuidelines.pdf

Le modalita di lavoro

@ Il lavoro & frazionato in epopee, fatte di storie, rilasciate con sprint di 1-3
settimane

@ closed window rule: durante uno sprint non si possono aggiungere funzionalita
(se proprio & necessario, lo sprint ricomincia)

@ Nelle riunioni di pianificazione i membri stimano la complessita con il planning
poker, facilitato dallo scrum master, usando una ‘storia di riferimento’ come
unita di misura: %,1,2,3,5,8, 13,20, 40, 100

@ Nelle riunioni si identificano pigs (direttamente coinvolti) e chicken (solo
interessati) che danno pareri solo se richiesto dai pigs

Daily stand-up (15 min.) Cosa abbiamo fatto ieri, cosa facciamo oggi, ci sono
impedimenti?

backlog con la stima per ogni epopea/storia

Planning (1-5 giorni) Pianificazione di uno sprint, definizione dello sprint
Retrospettiva (30 min.) Alla fine di uno sprint, per migliorare

Review (1 ora) Alla fine di uno sprint, presentazione del lavoro agli
stakeholder

Tecniche di lavoro

Ogni metodologia agile ne ha di specifiche, le piu famose sono:
@ Pair programming

Codice condiviso (di proprieta collettiva)

Test Driven Development (TDD)

°
@ Refactoring
°
o Velocity tracking

u]
Q
I
ul
i

Pair programming

Si programma a coppie, con una sola tastiera.
@ Obbliga a rendere espliciti i ragionamenti
@ Aiuta a mantenere il focus sull’obiettivo

e Diffonde la conoscenza totale della codebase (riducendo anche i rischi in caso
di assenza di un collaboratore)

Questa (e TDD) & fra le tecniche maggiormente studiate sperimentalmente:
nessuna evidenza che faccia differenza sulla qualita dei prodotti. La produttivita,
apparentemente dimezzata, rimane simile.

Codice condiviso

Tutto il team & responsabile di tutto il codice e pudo modificarlo a piacimento.
@ Un'unica codebase

@ Si lavora tutti sulla stessa branch senza specifici momenti di merge
e Continuous integration (possibile grazie a TDD)

@ |l codice & una forma di comunicazione broadcast

La proprieta collettiva non & una buona ragione per rinunciare all’information hiding

Refactoring

Martin Fowler, 2000: “is a disciplined technique for restructuring an existing body
of code, altering its internal structure without changing its external behavior.”

Sono piccole trasformazioni che non cambiano la semantica del codice, spesso
attuabili automaticamente con un editor “consapevole” del linguaggio di
programmazione.

Fowler mantiene un catalogo: http://refactoring.com/catalog/

http://refactoring.com/catalog/

Esempi di refactoring

e Fattorizzazione di codice ripetuto in una funzione/metodo
e Campi attributo in metodi getter/setter

@ Eliminazione di condizionali, sostituendoli con opportuni collegamenti dinamici
(sottoclassi)

e Fattorizzazioni di comportamenti complessi in superclassi (eventualmente
astratte)

Test-driven Development

[l test di unita viene scritto prima dell'unita stessa, servendo come “specifica” (ma
senza la necessaria generalita!)

@ Aggiungi un test

@ Ripeti tutti i test assicurandoti che il nuovo test fallisca
© Scrivi il codice dell'unita

© Ripeti i test (questa volta dovrebbero passare)

© Refactoring mantenendo il superamento dei test

@ Da capo

Ogni bug dovrebbe essere esaminato attentamente e diventare un nuovo caso di
test

u]
Q
I
ul
i

Supporto al test: testing frameworks

Librerie “xUnit” (JUnit, Kent Beck, 2002)
import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class CalculatorTest {
QTest

public void evaluatesExpression() {
Calculator calculator
int sum =

new Calculator();
calculator.evaluate("1+2+3");
assertEquals(6, sum);
}

Supporto al test: mock objects

new Order("car", 50);

Librerie che permettono di fare behavior verification, con oggetti “collaboratori”

public class OrderInteractionTester extends MockObjectTestCase {
public void testFillingRemovesInventoryIfInStock() {
Order order =

Mock warehouseMock = new Mock(Warehouse.class);
warehouseMock.expects(once()) .method("hasInventory")
.with(eq("car"),eq(50))
.will(returnValue(true));
warehouseMock.expects(once()) .method("remove")
.with(eq("car"), eq(50))

.after("hasInventory");

warehouseMock.verify();

order.fill((Warehouse) warehouseMock.proxy());
}

assertTrue(order.isFilled());

La task-board

Story Not Started In Progress Done
M | IJE o |B50

Hp0n o

OopO

i 0N

fisso.

Non & veramente una velocita, ssmmai uno “spazio percorso” in un tempo dato per

@ In una iterazione (sprint) & la somma degli item in stato Done

@ Se ne tiene traccia giornaliera con la burn down chart

@ Inizialmente stimata riferendosi a % del tempo a disposizione; con 6
programmatori e uno sprint di 2 settimane: 6 x 5 x 2 % =20

Burn down chart

Project X¥Z keration 1 Burn Down
30

148 M Ideal Tasks Remaining

10 M Actual Tasks Remaining

Sum of Task Estimates (days)

0 5 10 15 20
fteration Timeline (days) End

(By 18abug - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15511814)

] = =

	I punti chiave delle metodologie agili
	Punti controversi fuori dal mondo agile
	Team Scrum
	Tecniche di lavoro

