
PyQB

Monga

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2020/21, II semester

1
cba 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

126

Lecture XVI: Inheritance

PyQB

Monga

127

Destructuring a bound computation

def approx_euler(t: np.ndarray, f0: float, dfun:

Callable[[float], float]) -> np.ndarray:↪→

"""Compute the Euler approximation of a function on

times t, with derivative dfun.↪→

"""

res = np.zeros_like(t)

res[0] = f0

for i in range(1, len(t)):

res[i] = res[i-1] + (t[i]-t[i-1])*dfun(res[i-1])

return res

Since we approximate the solution of a differential equation
p′ = f (p, t), we used the trick of writing dfun as a function of
p: this is why we call it by passing a point of res (and not of
pyt). This trick makes it possible to compute it together with
res itself (given the initial condition).

PyQB

Monga

128

Two things together

A good way to keep two things separate (thus they can be
changed independently), but together is the object-oriented
approach: a class is a small world in which several
computations are bound together, they share data and can
depend one on each other.

PyQB

Monga

129

OOP approach

class EulerSolver:

"""An EulerSolver object computes the Euler approximation of a differential equation

p' = f(p, t).↪→

Create it by giving the f function, then set the initial condition P0.

The approximate solution on a given time span is computed by the method solve.

"""

def __init__(self, f: Callable[[float, float], float]):

self.f = f

def set_initial_condition(self, P0: float):

self.P0 = P0

def solve(self, time: np.ndarray) -> np.ndarray:

"""Compute p for t values over time."""

self.t = time

self.p = np.zeros_like(self.t)

....

def _diff(self, i: int) -> float:

"""Compute the differential increment at time of index i."""

assert i >= 0

...

PyQB

Monga

130

How to use it

time = np.linspace(0, 5, 100)

solver = EulerSolver(lambda p, t: 0.7*p)

solver.set_initial_condition(10)

euler = solver.solve(time)

PyQB

Monga

131

What we have gained

Conceptual steps are separated (but kept together by the
class). We can decide to change one of them independently.
Object-oriented programming has a feature to make this easy:
inheritance

class RKSolver(EulerSolver):

def _diff(self, i: int) -> float:

"""Compute the differential increment at time

of index i."""↪→

assert i >= 0

use Runge-Kutta now!

overridden functionality is available with

super()._diff(i)

RKSolver inherits the methods of EulerSolver and it
overrides the method _diff.

PyQB

Monga

132

Substitution principle

If inheritance is done properly (unfortunately not trivial in many
cases), the new class can be used wherever the old one was.

solver = RKSolver(lambda p, t: 0.7*p)

solver.set_initial_condition(10)

rk = solver.solve(time)

Overridden methods must be executable when the old ones
were and their must produce at least the “same effects”
(Liskov’s principle).

