Programming in Python ${ }^{1}$

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia mattia.monga@unimi.it

Academic year 2020/21, II semester

[^0] Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture XIII: A game of life

A game of life

In 1970, J.H. Conway proposed his Game of Life, a simulation on a 2D grid:
(1) Every cell can be alive or dead: the game start with a population of alive cells (seed)
(2) any alive cell with less of 2 alive neighbours dies (underpopulation)
(3) any alive cell with more than 3 alive neighbours dies (overpopulation)
(4) any dead cell with exactly 3 alive neighbours becomes alive (reproduction)
The game is surprisingly rich: many mathematicians, computer scientists, biologists. . . spent their careers on the emerging patterns!

Life forms

There are names for many "life forms" : still lifes, oscillators,
A famous starship is the glider:

The glider repeats itself in another position after 4 generations.

To implement a Game of Life simulation in Python, we can:
For a 1-D array X

All the neighbours on the right $\mathrm{X}[2:]$

All the neighbours on the left $\mathrm{X}[:-2]$
What does $\mathrm{X}[2:]+\mathrm{X}[:-2]$ represent? The sum is (yellow) element by (yellow) element, the result is: $[1,1,2,0]$ Can you think to a similar solution for the 2-D case?

- use a ndarray for the grid
- each cell contains 0 (dead) or 1 (alive)
- for simplicity we can add a "border" of zeros

0	0	0	0	0
0	1	1	1	0
0	1	0	1	0
0	1	1	0	0
0	0	0	0	0

0	0	0	0	0	0
0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	0
0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	0
0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	0
0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0
0	0	0	0	0	0

$\mathrm{X}[1:-1,2:]$					
0	0	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0

Avoid loops

$$
\mathrm{X}==1
$$

$$
N>3
$$

Death by overpopulation: $\mathrm{X}[(\mathrm{X}==1) \&(\mathrm{~N}>3)]=0$ (empty in this case!)

113

[^0]: @(®) 2020 M. Monga. Creative Commons Attribuzione - Condividi allo stesso modo 4.0

