
PyQB

Monga

Functions

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2020/21, II semester

1
cba 2020 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Functions

25

Lecture III: Functions and lists

PyQB

Monga

Functions

26

International Women’s Day

Ada Byron (Lady King, Countess of
Lovelace, 1815–1852) wrote the first ever
program for an automatic machine, the
“analytical engine” designed (but never
built) by Charles Babbage.

In 1840, C. Babbage gave a seminar in
Turin, Luigi Menabrea (future Italian prime
minister) transcribed it into French, Ada
translated it to English. . . with many original
notes, and a program to compute Bernoulli
numbers (1843).

An important programming language was
named after her: Ada.

Daguerreotype by

Antoine Claudet,

public domain

PyQB

Monga

Functions

27

Summary

In Python3

Variables are names to refer to objects;

Objects are elements of types, which define the operations
that make sense on them;

Therefore, the basic instructions are the assignment (bind
a name to an object), the proper operations for each
object, and the commands to ask the services of the
operating system;

One can alter the otherwise strictly sequential execution of
instruction with control flow statements: if, for, while.

Remember that in python3, indentation matters (it is part of
the syntax).

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

Functions

28

Proper operations

On objects one can apply binary and unary operators: 2 *

3 -(-5.0) not True 'foo' + 'bar'. . .

There also built-in functions like max(8,5,6), the full list
is here: https:

//docs.python.org/3/library/functions.html

(syntactically, commands like print or input cannot be
distinguished from other built-in functions)

Every object has methods that can be applied with the so
called dot notation: (3.2).is_integer()

'foo'.upper() 'xxx'.startswith('z'); the list of
which methods an object has is given by dir(object).

PyQB

Monga

Functions

29

Definition of functions

As variables are names for objects, one can also name
fragments of code:

def cube(x: int) -> int:

square = x * x

return square * x

Now we have a new operation cube, acting on ints: cube(3).
Type hints are optional (and ignored, you can call cube(3.2)
or cube('foo')), but very useful for humans (and tools like
mypy).

Equivalent

def cube(x):

square = x * x

return square * x

PyQB

Monga

Functions

30

A function computes a result

Returns a useful result
def concat_with_a_space(string1, string2):

return string1 + ' ' + string2

string1 is the _formal_ parameter

'foo' is the _actual_ parameter (like an assigment string1 =

'foo')↪→
print(concat_with_a_space('foo','bar'))

Return None
def repeated_print(string, repetitions):

for i in range(0, repetitions):

print(string)

repeatedPrint('Hello, world!', 3)

Recursive call:
def repeatedPrint(string, repetitions):

if repetitions > 0:

print(string)

repeatedPrint(string, repetitions - 1)

repeatedPrint('Hello, world!', 3)

PyQB

Monga

Functions

31

Functions are objects too

One can assign functions to variables:

def cube(x: int) -> int:

square = x * x

return square * x

mycube = cube

print(mycube(3))

print(type(mycube))

And short functions can even be expressed as literal expressions
(lambda expressions)

cube = lambda y: y*y*y

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

PyQB

Monga

Functions

32

Naming helps solving

The tower of Hanoi
https://www.mathsisfun.com/games/towerofhanoi.html

PyQB

Monga

Functions

33

Describe the moves for a solution

Recursive thinking is a powerful problem solving technique and
it can be translated to Python thanks to recursive calls.
Hanoi moves A→ C :

In A there is just one disk: move it to C

Otherwise in A there are n disks (> 1):
leap of faith! I suppose to know the moves needed to
move n − 1 disk; then

apply this (supposed) solution to move n− 1 disks from A
to B (leveraging on C , empty, as the third pole)
move the last disk from A to C
apply the (supposed) solution to move n− 1 disks from B
to C (leveraging on A, now empty, as the third pole)

This implicit description solve the problem! Finding a
non-recursive solution is possible but not that easy.

PyQB

Monga

Functions

34

In Python

def hanoi(n: int, a_from: str, c_to: str,

b_intermediate: str):↪→

if n == 1:

print('Move 1 disk from ' + a_from + ' to ' + c_to)

return

hanoi(n - 1, a_from, b_intermediate, c_to)

print('Move 1 disk from ' + a_from + ' to ' + c_to)

hanoi(n - 1, b_intermediate, c_to, a_from)

hanoi(3, 'A', 'C', 'B')

PyQB

Monga

Functions

35

Homework

Chapters 7A, 10, 11A, 11B, 11C, 12

Create an account on https://github.com/ (if you
don’t have one) and send me the name (Zulip preferred,
use a private message if you don’t want to make it known
to the other students).

https://www.mathsisfun.com/games/towerofhanoi.html
https://github.com/

	Functions

