
SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSO

prof. Carlo Bellettini

prof. Mattia Monga

a.a. 2020-21

Rimane disponibile ma... preferirei interventi audio

https://homes.di.unimi.it/bellettini/questions

codice di oggi d 22102020

https://homes.di.unimi.it/bellettini/questions

8. InYWT STfY\aWe cTnègZWaYiTn managemenY

STfY\aWe CTnègZWaYiTn ManagemenY

Il Configuration Management nasce nellÚindustria aerospa_iale negli anni Ú50. Alla fine degli anni Ú70
ini_ia a essere applicato nella produ_ione del soft\are.

Pratiche che hanno lÚobiettivo di rendere sistematico il processo di sviluppo, tenendo traccia dei
cambiamenti in modo che il prodotto sia in ogni istante in uno stato (configura_ione) ben definito.

Gli ÜoggettiÝ di cui si controlla lÚevolu_ione sono detti configuration item o (in ambito s\) artifact.

TWe XceSaWi di eXemUiT

Programmatore solo

Collabora_ione Studente professore

Blaming

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020
2 / 16

SCM: di cTXa Xi TccZUanT

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020

Gli artifact sono file o pi½ raramente director^

lÚSCM permette di tracciare/controllare le revisioni degli artifact e le versioni delle
risultanti configura_ioni

a volte fornisce supporto per la genera_ione del prodotto a partire da una ben
determinata configura_ione

3 / 16

Gli XYWZmenYi di SCM

Gli SCM sono per lo pi½ indipendenti da linguaggi di programma_ione e applica_ioni (una notevole
ecce_ione ¬ Monticello di Smalltalk): lavorano genericamente su file, preferibilmente fatti di righe di
testo.

anni Ú80: strumenti locali (SCCS, rcs, . . .)

anni Ú90: strumenti client-server centrali__ati (cvs, subversion, . . .)

anni 2000: strumenti distribuiti peer-to-peer (git, mercurial,)

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020
4 / 16

DZe deciXiTni imUTWYanYi

Qualunque sistema si usi, occorre prendere due decisioni importanti, che influen_ano la replicabilit¤
della produ_ione. In entrambi i casi la risposta pi½ comune ¬ ST, ma in questo caso la perfetta
replicabilit¤ ¬ perduta.

1. Si traccia lÚevolu_ione anche di componenti fuori dal nostro controllo? (librerie, compilatori, ecc.)

2. Si archiviano i file che costituiscono il prodotto?

(1) ¬ poten_ialmente molto costoso

(2) ¬ spesso poco pratico

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020
5 / 16

Il meccaniXmT baXe

Il meccanismo di base per controllare lÚevolu_ione delle revisioni ¬ che ogni cambiamento ¬ regolato
da:

1. check-out dichiara la volont¤ di cambiare un determinato artifact

2. check-in (o commit) dichiara la volont¤ di registrare un determinato change-set

Queste opera_ioni vengono attivate rispetto a unÚapplica_ione di repositor^

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020
6 / 16

La WegTla_iTne del la[TWT cTncTWWenYe

Quando il repositor^ ¬ condiviso da un gruppo di lavoro, nasce il problema di gestirne lÚaccesso
concorrente:

modello ÜpessimisticoÝ (rcs) il sistema gestisce lÚaccesso agli artifact in mutua esclusione
attivando un lock al check-out

modello ÜottimisticoÝ (cvs) il sistema si disinteressa del problema e fornisce supporto per le
attivit¤ di merge di change-set paralleli poten_ialmente conflittuali.

Il modello pessimistico ¬, nello sviluppo soft\are, tanto irrealistico e ideale quanto il processo a
ÜcascataÝ. Il modello ottimistico pu¶ per¶ essere par_ialmente regolato tramite i rami paralleli di
sviluppo (branch).

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020
7 / 16

Il meWge

Il merge rimane unÚopera_ione delicata. Generalmente vengono trattati con strategie diverse:

lavoro parallelo su artifact diversi

lavoro parallelo sullo stesso artifact: hunk differenti

lavoro parallelo sullo stesso artifact: hunk uguali

LÚultimo caso necessita sempre di lavoro intelligente. Nel resto dei casi, dipende.

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020
8 / 16

La YeWminTlTgia UeW i meWge

La terminologia pi½ usata fa riferimento alla coppia di programmi POSIX diff e paWch

INKK calcola la differen_a fra due revisioni (R0, R1), calcolata per righe, cercando di minimi__are il
numero di inserimenti e cancella_ioni (ricerca della sottosequen_a pi½ lunga)

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020

R0 = a b c d f g h j T]
R1 = a b c d e f g i j k U [\]

LÚinterse_ione ¬ = a b c d f g j]

e h i T k U [\
+ - + - + + + +

Il diff ¬ diviso in ÜfetteÝ hunk
e, hi, T, kU[\

UFYHM ¬ il programma che permette di applicare il diff non solo a R0 per ottenere R1, ma anche a un
qualunque R0' ÜvicinoÝ a R0 (che diventer¤ un R1'), applicando alcune euristiche per ogni hunk. 9 / 16

3-\a^ meWge

Quando, come nel caso di lavoro parallelo sullo stesso artifact, le due revisioni hanno un antenato
comune (per esempio la revisione da cui entrambi sono partiti) si pu¶ facilitare il lavoro di merge.

Siano A' e A'' due revisioni, con antenato comune A

hunk uguale nelle tre revisioni: inalterato

hunk uguale in due delle tre revisioni

A' e A'' uguali: merge (A')

A e A' uguali: merge A''

(A e A'' uguali: merge A')

hunk diverso nelle tre revisioni deve essere valutato a mano

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020
10 / 16

8b. GiY

VeWXiTning diXYWibZiYT

Internals

Architettura

Alcuni comandi un po' pi½ avan_ati: Histor^ re\riting

Alcuni \orkflo\

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020
11 / 16

FTWmaYT degli TbjecYX

IJK UZYDWF\DTGOJHY(HTSYJSY, Y^UJ)
 XN_J = HTSYJSY.QJSLYM.YTDX

 MJFIJW = "#`Y^UJb #`XN_JbA0" # Y^UJ(XUFHJ)XN_J(SZQQ G^YJ)
 XYTWJ = MJFIJW + HTSYJSY

 XMF1 = DNLJXY::SHA1.MJ]INLJXY(XYTWJ)
 UFYM = @LNYDINW + '/' + XMF1[0...2B + '/' + XMF1[2..40B

 NK !FNQJ.J]NXYX?(UFYM)
 HTSYJSY = ZQNG::DJKQFYJ.IJKQFYJ(XYTWJ)

 FNQJUYNQX.RPINWDU(@INWJHYTW^+'/'+XMF1[0...2B)
 FNQJ.TUJS(UFYM, '\') IT aKa
 K.\WNYJ HTSYJSY
 JSI
 JSI
 WJYZWS XMF1
JSI

prof. Mattia Monga e prof. Carlo Bellettini dd - dd SVILUPPO SOFTWARE IN GRUPPI DI LAVORO COMPLESSI - 2020
12 / 16

