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8. InYWT STfY\aWe cTnègZWaYiTn managemenY



STfY\aWe CTnègZWaYiTn ManagemenY

Il Configuration Management nasce nellÚindustria aerospa_iale negli anni Ú50. Alla fine degli anni Ú70
ini_ia a essere applicato nella produ_ione del soft\are.

Pratiche che hanno lÚobiettivo di rendere sistematico il processo di sviluppo, tenendo traccia dei
cambiamenti in modo che il prodotto sia in ogni istante in uno stato (configura_ione) ben definito.

Gli ÜoggettiÝ di cui si controlla lÚevolu_ione sono detti configuration item o (in ambito s\) artifact.

TWe XceSaWi di eXemUiT
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SCM: di cTXa Xi TccZUanT
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Gli artifact sono file o pi½ raramente director^

lÚSCM permette di tracciare/controllare le revisioni degli artifact e le versioni delle
risultanti configura_ioni

a volte fornisce supporto per la genera_ione del prodotto a partire da una ben
determinata configura_ione
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Gli XYWZmenYi di SCM

Gli SCM sono per lo pi½ indipendenti da linguaggi di programma_ione e applica_ioni (una notevole
ecce_ione ¬ Monticello di Smalltalk): lavorano genericamente su file, preferibilmente fatti di righe di
testo.

anni Ú80: strumenti locali (SCCS, rcs, . . . )

anni Ú90: strumenti client-server centrali__ati (cvs, subversion, . . . )

anni 2000: strumenti distribuiti peer-to-peer (git, mercurial, . . . . . . )
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DZe deciXiTni imUTWYanYi

Qualunque sistema si usi, occorre prendere due decisioni importanti, che influen_ano la replicabilit¤
della produ_ione. In entrambi i casi la risposta pi½ comune ¬ ST, ma in questo caso la perfetta
replicabilit¤ ¬ perduta.

1. Si traccia lÚevolu_ione anche di componenti fuori dal nostro controllo? (librerie, compilatori, ecc.)

2. Si archiviano i file che costituiscono il prodotto?

(1) ¬ poten_ialmente molto costoso

(2) ¬ spesso poco pratico
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Il meccaniXmT baXe

Il meccanismo di base per controllare lÚevolu_ione delle revisioni ¬ che ogni cambiamento ¬ regolato
da:

1. check-out dichiara la volont¤ di cambiare un determinato artifact

2. check-in (o commit) dichiara la volont¤ di registrare un determinato change-set

Queste opera_ioni vengono attivate rispetto a unÚapplica_ione di repositor^
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La WegTla_iTne del la[TWT cTncTWWenYe

Quando il repositor^ ¬ condiviso da un gruppo di lavoro, nasce il problema di gestirne lÚaccesso
concorrente:

modello ÜpessimisticoÝ (rcs) il sistema gestisce lÚaccesso agli artifact in mutua esclusione
attivando un lock al check-out

modello ÜottimisticoÝ (cvs) il sistema si disinteressa del problema e fornisce supporto per le
attivit¤ di merge di change-set paralleli poten_ialmente conflittuali.

Il modello pessimistico ¬, nello sviluppo soft\are, tanto irrealistico e ideale quanto il processo a
ÜcascataÝ. Il modello ottimistico pu¶ per¶ essere par_ialmente regolato tramite i rami paralleli di
sviluppo (branch).
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Il meWge

Il merge rimane unÚopera_ione delicata. Generalmente vengono trattati con strategie diverse:

lavoro parallelo su artifact diversi

lavoro parallelo sullo stesso artifact: hunk differenti

lavoro parallelo sullo stesso artifact: hunk uguali

LÚultimo caso necessita sempre di lavoro intelligente. Nel resto dei casi, dipende.
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La YeWminTlTgia UeW i meWge

La terminologia pi½ usata fa riferimento alla coppia di programmi POSIX diff e paWch

INKK calcola la differen_a fra due revisioni (R0, R1), calcolata per righe, cercando di minimi__are il
numero di inserimenti e cancella_ioni (ricerca della sottosequen_a pi½ lunga)
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R0 = a b c d f g h j T ] 
R1 = a b c d e f g i j k U [ \ ]

LÚinterse_ione ¬ = a b c d f g j ]

e h i T k U [ \ 
+ - + - + + + +

Il diff ¬ diviso in ÜfetteÝ hunk 
e, hi, T, kU[\

UFYHM ¬ il programma che permette di applicare il diff non solo a R0 per ottenere R1, ma anche a un
qualunque R0' ÜvicinoÝ a R0 (che diventer¤ un R1'), applicando alcune euristiche per ogni hunk. 9 / 16



3-\a^ meWge

Quando, come nel caso di lavoro parallelo sullo stesso artifact, le due revisioni hanno un antenato
comune (per esempio la revisione da cui entrambi sono partiti) si pu¶ facilitare il lavoro di merge.

Siano A' e A'' due revisioni, con antenato comune A

hunk uguale nelle tre revisioni: inalterato

hunk uguale in due delle tre revisioni

A' e A'' uguali: merge (A')

A e A' uguali: merge A''

( A e A'' uguali: merge A' )

hunk diverso nelle tre revisioni deve essere valutato a mano
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8b. GiY



VeWXiTning diXYWibZiYT

Internals

Architettura

Alcuni comandi un po' pi½ avan_ati: Histor^ re\riting

Alcuni \orkflo\
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FTWmaYT degli TbjecYX

IJK UZYDWF\DTGOJHY(HTSYJSY, Y^UJ)
  XN_J = HTSYJSY.QJSLYM.YTDX

  MJFIJW = "#`Y^UJb #`XN_JbA0" # Y^UJ(XUFHJ)XN_J(SZQQ G^YJ)
  XYTWJ = MJFIJW + HTSYJSY

  XMF1 = DNLJXY::SHA1.MJ]INLJXY(XYTWJ)
  UFYM = @LNYDINW + '/' + XMF1[0...2B + '/' + XMF1[2..40B

  NK !FNQJ.J]NXYX?(UFYM)
    HTSYJSY = ZQNG::DJKQFYJ.IJKQFYJ(XYTWJ)

    FNQJUYNQX.RPINWDU(@INWJHYTW^+'/'+XMF1[0...2B)
    FNQJ.TUJS(UFYM, '\') IT aKa
      K.\WNYJ HTSYJSY
    JSI
  JSI
  WJYZWS XMF1
JSI
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