UNIVERSITA DEGLI STUDI
DI MILANO

SviLurPO SoFTWARE IN GRUPPI DI LAVORO COMPLESSO

prof. Carlo Bellettini
prof. Mattia Monga

a.a.2020-21

Rimane disponibile ma... preferirei interventi audio

https://homes.di.unimi.it/bellettini/questions
codice di oggi 22102020

https://homes.di.unimi.it/bellettini/questions

UNIVERSITA DEGLI STUDI
DI MILANO

8. Intro Software configuration management

Software Configuration Management

Il Configuration Management nasce nell’industria aerospaziale negli anni ’50. Alla fine degli anni ’70
inizia a essere applicato nella produzione del software.

Pratiche che hanno 'obiettivo di rendere sistematico il processo di sviluppo, tenendo traccia dei
cambiamenti in modo che il prodotto sia in ogni istante in uno stato (configurazione) ben definito.

Gli “oggetti” di cui si controlla 'evoluzione sono detti configuration item o (in ambito sw) artifact.

Tre scenari di esempio

<0
== e Programmatore solo
mm5
(L]
- = .
Eg% e Collaborazione Studente professore
2 AA

e Blaming

2/16

prof. Mattia Monga e prof. Carlo Bellettini - SviLuppo Sortware IN GRupPI DI Lavoro CompLEssi - 2020

SCM: di cosa si occupano

e Gli artifact sono file o piu raramente directory

e |'SCM permette di tracciare/controllare le revisioni degli artifact e le versioni delle

< . . . o

EE% risultanti configurazioni

=A%)

] — =

> = . { .

=32 e avolte fornisce supporto per la generazione del prodotto a partire da una ben
2 AA

determinata configurazione

3/16

prof. Mattia Monga e prof. Carlo Bellettini - Sviupro SorTware IN GRuPPI DI Lavoro CompLEssi - 2020

Gli strumenti di SCM

Gli SCM sono per lo piu indipendenti da linguaggi di programmazione e applicazioni (una notevole
eccezione e Monticello di Smalltalk): lavorano genericamente su file, preferibilmente fatti di righe di
testo.

e anni’80: strumenti locali (SCCS, rcs, .. .)

e anni’90: strumenti client-server centralizzati (cvs, subversion, ...)

e anni2000: strumenti distribuiti peer-to-peer (git, mercurial,)

UNIVERSITA
DEGLI STUDI
DI MILANO

4/16

prof. Mattia Monga e prof. Carlo Bellettini - Sviupro SorTware IN GRuPPI DI Lavoro CompLEssi - 2020

Due decisioni importanti

Qualunque sistema si usi, occorre prendere due decisioni importanti, che influenzano la replicabilita
della produzione. In entrambi i casi la risposta piu comune € no, ma in questo caso la perfetta
replicabilita e perduta.

1. Si traccia l’evoluzione anche di componenti fuori dal nostro controllo? (librerie, compilatori, ecc.)

2. Si archiviano i file che costituiscono il prodotto?

(1) e potenzialmente molto costoso

(2) e spesso poco pratico

UNIVERSITA
DEGLI STUDI
DI MILANO

5/16

prof. Mattia Monga e prof. Carlo Bellettini - Sviupro SorTware IN GRuPPI DI Lavoro CompLEssi - 2020

Il meccanismo base

Il meccanismo di base per controllare l’evoluzione delle revisioni € che ogni cambiamento e regolato
da:

1. check-out dichiara la volonta di cambiare un determinato artifact

2. check-in (o commit) dichiara la volonta di registrare un determinato change-set

Queste operazioni vengono attivate rispetto a un’applicazione di repository

UNIVERSITA
DEGLI STUDI
DI MILANO

6/16

prof. Mattia Monga e prof. Carlo Bellettini - Sviupro SorTware IN GRuPPI DI Lavoro CompLEssi - 2020

La regolazione del lavoro concorrente

Quando il repository e condiviso da un gruppo di lavoro, nasce il problema di gestirne ’'accesso
concorrente:

e modello “pessimistico” (rcs) il sistema gestisce I'accesso agli artifactin mutua esclusione
attivando un lock al check-out

e modello “ottimistico” (cvs) il sistema si disinteressa del problema e fornisce supporto per le
attivita di merge di change-set paralleli potenzialmente conflittuali.

Il modello pessimistico €, nello sviluppo software, tanto irrealistico e ideale quanto il processo a
“cascata”. Il modello ottimistico puo pero essere parzialmente regolato tramite i rami paralleli di
sviluppo (branch).

UNIVERSITA
DEGLI STUDI
DI MILANO

7/16

prof. Mattia Monga e prof. Carlo Bellettini - Sviupro SorTware IN GRuPPI DI Lavoro CompLEssi - 2020

Il merge

Il merge rimane un’operazione delicata. Generalmente vengono trattati con strategie diverse:

e lavoro parallelo su artifact diversi
e lavoro parallelo sullo stesso artifact. hunk differenti

e lavoro parallelo sullo stesso artifact. hunk uguali

L’ultimo caso necessita sempre di lavoro intelligente. Nel resto dei casi, dipende.

UNIVERSITA
DEGLI STUDI
DI MILANO

8/16

prof. Mattia Monga e prof. Carlo Bellettini - Sviupro SorTware IN GRuPPI DI Lavoro CompLEssi - 2020

La terminologia per 1 merge

La terminologia piu usata fa riferimento alla coppia di programmi POSIXdif f e patch

di ff calcola la differenza fra due revisioni (RO, R1), calcolata per righe, cercando di minimizzare il
numero di inserimenti e cancellazioni (ricerca della sottosequenza piu lunga)

RO=a bcd fghjqz

Rl=a bcde fgijkrzxyz

L’intersezionee=a b c d £f g j z

ehiqkrzxy
+ -+ -+ + + +

Iégo

21;‘)5 elf N g - .« 9
a Il diff € diviso in “fette” hunk
EUE .

2= e, hi, q, krxy

patch eil programma che permette di applicare il diff non solo a RO per ottenere R1, ma anche a un
qualunque RO' “vicino” a RO (che diventera un R1'), applicando alcune euristiche per ogni hunk. 9/16

prof. Mattia Monga e prof. Carlo Bellettini - Sviupro SorTware IN GRuPPI DI Lavoro CompLEssi - 2020

3-way merge

Quando, come nel caso di lavoro parallelo sullo stesso artifact, le due revisioni hanno un antenato
comune (per esempio la revisione da cui entrambi sono partiti) si puo facilitare il lavoro di merge.

Siano A' e A" due revisioni, con antenato comune A

e hunkuguale nelle tre revisioni: inalterato

e hunkuguale in due delle tre revisioni

o A'e A" uguali: merge (A')

o AeA'uguali: merge A"

’E%% o (AeA"uguali: mergeA')

25%

§23§ . C .

=92 e hunkdiverso nelle tre revisioni deve essere valutato a mano
2 AA

10/16

prof. Mattia Monga e prof. Carlo Bellettini - Sviupro SorTware IN GRuPPI DI Lavoro CompLEssi - 2020

UNIVERSITA DEGLI STUDI
DI MILANO

8b. Git

Versioning distribuito

e Internals
e Architettura
e Alcuni comandi un po' piu avanzati: History rewriting

e Alcuni workflow

UNIVERSITA
DEGLI STUDI
DI MILANO

11/16

prof. Mattia Monga e prof. Carlo Bellettini - Sviupro SorTware IN GRuPPI DI Lavoro CompLEssi - 2020

Formato degli objects

def put_raw_object(content, type)
size = content.length.to_s

header = "#{type} #{size}\O"
store = header + content

shal
path

Digest::SHAl.hexdigest(store)
@git_dir + '/' + shal[0...2] + '/' + shal[2..40]

if !File.exists?(path)
content = Zlib::Deflate.deflate(store)

FileUtils.mkdir_p(@directory+'/'+shal[0...2])
File.open(path, 'w') do |f|
f.write content

end
end
return shal
~ end

ES0
25z
SEE
=32
onA

prof. Mattia Monga e prof. Carlo Bellettini - Sviupro SorTware IN GRuPPI DI Lavoro CompLEssi - 2020

