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Technical University of Berlin Università degli Studi di Milano Technical University of Berlin

Germany Italy Germany

mehner@cs.tu-berlin.de mattia.monga@unimi.it gabi@cs.tu-berlin.de

Abstract

Aspect-oriented concepts are currently introduced in all
phases of the software development life cycle. However,
the complexity of interactions among different aspects and
between aspects and base entities may reduce the value of
aspect-oriented separation of cross-cutting concerns. Some
interactions may be intended or may be emerging behavior,
while others are the source of unexpected inconsistencies.
It is therefore desirable to detect inconsistencies as early as
possible, preferably at the modeling level.
We propose an approach for analyzing interactions and po-
tential inconsistencies at the level of requirements mod-
eling. We use a variant of UML to model requirements
in a use case driven approach. Activities that are used
to refine use cases are the join points to compose cross-
cutting concerns. The activities and their composition are
formalized using the theory of graph transformation sys-
tems, which provides analysis support for detecting poten-
tial conflicts and dependencies between rule-based trans-
formations. This theory is used to effectively reason about
potential interactions and inconsistencies caused by aspect-
oriented composition. The analysis is performed with the
graph transformation tool AGG. The automatically ana-
lyzed conflicts and dependencies also serve as an additional
view that helps in better understanding the potential behav-
ior of the composed system.

1 Motivation
Aspect-oriented programming promises to provide bet-

ter separation and integration of cross-cutting concerns than
plain object-oriented programming. Aspect-oriented con-
cepts are currently introduced in all phases of the software
development life cycle with the aim of reducing complexity
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and enhancing maintainability already early on.
On the requirements level, cross-cutting concerns, i.e.

concerns that effect many other requirements, cannot be
cleanly modularized using object-oriented and view-point-
based techniques. Several approaches have been proposed
to identify cross-cutting concerns already at the require-
ments level and to provide means to modularize, represent
and compose them using aspect-oriented techniques, e.g.
for use case driven modeling in [27, 18, 3, 25, 24].

A key challenge is to analyze the interaction and con-
sistency of cross-cutting concerns with each other and
with affected requirements. It is in particular the quan-
tifying nature [13] of aspect-oriented composition that
makes conquering interactions and inconsistencies difficult.
When composing aspect-oriented and object-oriented mod-
els, there are two sources of interactions, and thus potential
inconsistencies.

1. Intended or unintended overlap in concepts between
these models can be the source of inconsistencies. De-
pending on the composition, these inconsistencies be-
come effective or are avoided.

2. Aspect-oriented composition specifies where and
when an aspect is applied and how the control flow
is augmented or changed. It can be used to solve some
of the above-mentioned inconsistencies, e.g. by replac-
ing object-oriented behavior consistently with aspect-
oriented behavior. However it might create inconsis-
tencies by accidentally duplicating or suppressing be-
havior.

It is desirable to identify aspect interactions and potential
inconsistencies as early as possible in the life cycle. Not
all identified interactions are necessarily inconsistencies.
Some of them may be intended or emerging collaborations.
Until now, approaches to analyzing the aspectual composi-
tion of requirements have been informal [27, 25, 24]. For-
mal approaches for detecting inconsistencies have been pro-
posed only for the programming level, e.g. model checking
[20], static analysis [26], and slicing [32, 5].



The programming techniques cannot be used for require-
ments because they rely on the operational specification
of the complete behavior as given by the code, while re-
quirements abstract from these details. On the requirements
level, a commonly used, but often informal, technique is to
describe behavior with pre- and post-conditions, e.g. using
intentionally defined states or attributes of a domain entity
model. This technique is, for example, used for defining
UML use cases. In order to allow a more rigorous analy-
sis of behavior, this approach has to be formalized and also
extended to aspect-oriented units of behavior.

In this paper, we investigate the use of an existing model
analysis technique based on graph transformations [11] for
analyzing the interactions and inconsistencies of an aspect-
oriented composition of object and aspect models. The
rule-based paradigm of graph transformation can be used
as a formal model for behavior specifications with pre- and
postconditions. The theory provides results for detecting
interactions and potential inconsistencies among behavioral
specifications.

We illustrate our approach with a use case driven model-
ing approach using UML [30] use cases, activity, and class
diagrams. We specify aspect-oriented compositions for use
cases using their refining activities as join points. Activi-
ties are rigorously defined with pre- and postconditions us-
ing a variant of UML and subsequently analyzed for con-
flicts and dependencies with the tool AGG [1], an environ-
ment for specifying, analyzing, simulating, and executing
graph transformation systems. Since the graph transfor-
mation system is not aware of aspects, the results have to
be interpreted according to the aspect-oriented composition
specification.

The paper is organized as follows. In Sect. 2, we describe
the formally enhanced use casen driven approach using an
example and introduce the notion of conflicting and depend-
ing behavioral interactions. In Sect. 3, we introduce graph
transformations and their analysis facilities. In Sect. 4, we
apply the analysis to the example and interpret results with
respect to aspect-oriented composition. In Sect. 5, we dis-
cuss related work. Sect. 6 contains our conclusion and out-
look.

2 Aspect-Oriented Requirements Modeling
Several authors have proposed extending a use case

driven requirements modeling approach with aspects [27,
18, 16, 21]. Aspects represent non-functional or functional
cross-cutting requirements. In [2], functional aspects are
identified at the level of use case relationships. The join
points, i.e. the points of aspect-oriented composition, are
activities or groups of activities, as in [27]. We present
a subset of these techniques in order to demonstrate, how
such approaches can be enhanced by (i) a formalization and
(ii) a formal analysis.

Figure 1: Use Cases in the Travel Agency Example

Figure 2: Domain Model Class Diagram

2.1 A Use Case Driven Approach

Central to our approach is the use case diagram, which
serves as an overview. In addition, a use case is at least
specified by a trigger, an actor, a pre-, a post-condition,
main scenario(s), and exceptional scenario(s). Scenarios
can be specified with UML activity diagrams. Here, we
only present scenarios since they will be formalized. In ad-
dition, the domain model class diagram plays an important
role because we refer to it in the formalization.

We illustrate the approach using a travel agency offering
flights and car rentals and a bonus scheme.

2.1.1 Use Cases

For purchasing travel items, the system offers the use cases
“buy flight” and “rent car” (cf. Fig. 1). The use cases “earn
bonus” and “redeem bonus” offer a bonus program. A staff
member is involved as an actor in all use cases but this does
not imply that the actor always triggers the use case.

2.1.2 Domain Model Class Diagram

The class diagram specifies the structure of the domain
(cf. Fig. 2). A Customer may book and pay for a Travel
item, either a Flight or a Rental, sold by an Agency. Each
travel item can be booked at most once. A Flight is com-
posed of one or more legs, denoted by “leg of”. A Ticket
“refers to” a Customer and a Flight. A Rental “engages”
one Car. A Car can be engaged in different Rentals. A
Customer who “owns” a BonusAccount may earn and re-
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Figure 3: Activity Diagrams

deem bonus for Travel items.

2.1.3 Activities

The steps of the main scenario of each use case are de-
scribed using activity diagrams. The use case “buy flight”
is refined in Fig. 3(a). After conditionally creating a cus-
tomer, the flight and all its legs are booked. Then the flight
is paid for and a ticket issued. The use case “rent car” is
specified analogously in Fig. 3(b). Bonus use cases are in-
dependent of the kind of travel. To earn a bonus, a bonus
account must exist. A bonus is earned for all travel items
(cf. Fig. 3(c)). For redeeming a travel item, one uses the
bonus (cf. Fig. 3(d)).

2.1.4 Pre- and Post-conditions

The domain model can be more tightly integrated with ac-
tivities by specifying the pre- and post-conditions of each
activity using prototypical instances. An object diagram,
i.e. the structural part of a UML collaboration diagram,
lends itself naturally as a diagrammatic description of such
a pre- or post-condition. This has also been advocated by
object-oriented methods like Fusion [12] or Catalysis [10].

The pre- and postconditions specify arbitrary but fixed
instances. A post-condition can refer to the same instance
as the pre-condition by referring to the instance identi-
fier, given as a number. Attributes can be matched with
values. An attribute to be changed in a post-condition
has to be instantiated in the pre-condition. Creation is
specified by introducing a new instance or link in a post-
condition. Deletion is specified by omitting an instance or

Figure 4: Activity Pre- and Post-Conditions
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a link present in a pre-condition in the corresponding post-
condition. Pre-conditions can include negative conditions,
which are often used to specify that a created element does
not yet exist. Negative links and instances are drawn us-
ing a dashed (out)line with a notation from graph transfor-
mations. Several negative elements have AND-semantics.
(OR-semantics is possible, but it is not discussed here.)

Fig. 4 gives the pre- and post-conditions of all activi-
ties. In (1), the pre-condition checks that a customer named
“n” does not exist. The post-condition ensures that this cus-
tomer is created. In (2), neither “books” exists, nor is the
flight a “leg of” another flight. A link “books” is inserted.
In (3), attributes are matched with value parameters that
are used to calculate the post-condition values. In the pre-
condition, a constrained on the values “t<s” is used. The
other pre- and post-conditions are constructed in a similar
way. When specifying these conditions, the formal analysis
of the tool AGG (cf. Sect. 3) already helped in identifying
unintended imprecisions.

2.2 Aspect-Oriented Composition

Until now, we have left the specification of aspect-
oriented relationships between use cases open. The no-
tion of aspect-oriented composition is analogous to AspectJ
[4]:
• An advice is modeled with a use case and subsequently

specified using activity diagrams and pre- and post-
conditions.

• The pointcuts, i.e. the matching specifications, refer to
activities. Partial matching of names is possible. Each
activity can thus be a join point.

• The modifiers before, after and replace indicate
that the advice use case is executed before, after, or in-
stead of each activity matched.

In practice, more complex pointcuts and more sophisticated
matching mechanisms may be useful. Pointcuts are stati-
cally defined without dynamically evaluated conditions.

In the example of the travel agency use cases (cf. Fig.
1), cross-cutting behavior is exhibited by the use case “earn
bonus”. It augments the use cases “buy flight” and “rent
car”. Thus, the activity diagram specifying “earn bonus” is
composed with the other activity diagrams. It should take
place after booking is completed, i.e. before the follow-
ing activity “Pay flight” or “Pay rental”. Thus, the pointcut
matches activities starting with “Pay” (cf. Tab. 1) using the
modifier before. “Redeem bonus” should take place in-
stead of “pay flight” or “pay rental”(cf. Tab. 1).

2.3 Interactions in Aspect-Oriented Composition

During aspect-oriented modeling, one needs to under-
stand the effects of an aspect model on the model of the
rest of the system, i.e. other aspect models and object mod-
els, but also how the aspect model is affected by them.
The specified aspect-oriented composition should be feasi-

Use Case Modifier Pointcut (Activity)
earn bonus before Pay*
redeem bonus replace Pay*

Table 1: Aspect-Oriented Composition

ble and should not violate other behavior constraints. This
issue has been further analyzed by Katz [19], who dis-
tinguishes the following desirable properties of an aspect-
oriented composition:
• Specified properties of the existing system are preserved

(apart from replaced behavior).
• The aspect adds desired new properties.
• Different aspect behaviors do not interfere.

These desirable properties are affected by the two
sources of interactions we have already identified in the mo-
tivation, those directly between behavior and those that are
established through the aspect-oriented composition. We
can identify interactions based on the activities specified
with pre- and post-conditions. We distinguish conflicts and
dependencies.

An activity A2 is in conflict with an activity A1, if
A2 cannot take place after activity A1 because the pre-
conditions of A2 are violated by the post-conditions of A1.
An activity A2 depends on an activity A1 if A1 produces
something needed by the activity A2 or deletes something
forbidden by A2. A conflict or dependency can arise be-
tween an activity from the object model and between an ac-
tivity from the aspect model in both directions or between
different aspect models.

In the following, we analyze all conflicts and dependen-
cies which become effective with regard to aspect-oriented
composition. Some of them may be tolerable or even
needed is a function of the application domain, however our
formal analysis helps in making them explicit.

Through the aspect-oriented composition two control
flows are merged, and activities from different models be-
come direct or indirect successors or predecessors of each
other or replace each other. All conflicts and dependencies
have to be taken into account in order to determine if the
merge is successful, i.e. if the additional behavior is enabled
and not prevented by conflicts and if it does not change the
existing behavior.

We illustrate the typical scenario with the use case “re-
deem bonus” (cf. Fig. 1). The aspect-oriented composition
(cf. Tab. 1) specifies that its activities (cf. Fig. 3) can re-
place an activity “Pay∗” (cf. Fig. 3). To check that the com-
position can work, we have to compare the pre- and post-
conditions of the activities involved in order to establish po-
tential conflicts and dependencies between activities. In the
example, one would try to find out whether “Redeem” can
occur after “Book flight” and “Book rental”. This is possi-
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ble, because it depends on them.
Manually identifying all conflicts and dependencies

from pre- and post-conditions is inefficient and error-prone.
In the next section, we describe how the detection of con-
flicts and dependencies can be automated using existing
technologies and tool support. We must therefore intro-
duce the basics of graph transformation theory, which can
be used to formalize pre- and post-conditions of behavioral
models.

3 Graph Transformation
The UML variant presented in Sect. 2 is a modeling ap-

proach for requirements which can be precisely defined by
the theory of graph transformation. While class structures
are formalized by type graphs, pre- and post conditions of
activities are mapped to graph rules. The formalization
functions as the necessary basis for analyzing interactions
in aspect-oriented composition in precisely. The calculus of
graph transformation has a sound background dating back
to the early seventies: the interested reader is referred to
seminal work in this area [11]. In this paper, we present
only as much theoretical background as is needed to under-
stand our approach.

3.1 Attributed Typed Graph

Graphs can be used as an abstract representation of di-
agrams. A graph is defined by the sets of its vertices and
edges as well as two functions, source and target, that map
edges on vertices. According to this definition, more than
one edge can exist between two given vertices. When for-
malizing object-oriented modeling, graphs occur at two lev-
els: the type level (defined based on class diagrams) and
the instance level (given by all valid object diagrams). This
idea is described by the concept of typed graphs, where a
fixed type graph TG serves as an abstract representation of
the class diagram. Moreover, both vertices and edges may
be decorated by a number of attributes, i.e. names with
a value and type. As in object-oriented modeling, types
can be structured by an inheritance relation. Instances of
the type graph are object graphs equipped with a structure-
preserving mapping to the type graph, i.e. a mapping that
preserves the source and target functions for edges. A class
diagram can thus be represented by a type graph, plus a set
of constraints over this type graph, expressing multiplicities
and perhaps further constraints.

In our running example, the type graph (cf. Fig. 5 (a))
represents the domain model of the system, equivalent to
the UML class diagram in Fig. 2. However, the inheritance
relationship was rendered by flattening all the associations
of Travel to Flight and Rental. This is necessary because all
the edges of a graph should have the same semantics (a rela-
tionship between two nodes) to be used consistently during
the analysis. Fig. 5 (b) shows an instance graph compliant
with the type graph.

3.2 Attributed Typed Graph Transformations

Basically, a graph transformation is a rule-based modi-
fication of a graph G into a graph H . Rules are expressed
by two graphs (L,R), where L is the left-hand side of the
rule and R is the right hand side, and a mapping between
objects in L and R. The left-hand side L represents the
pre-conditions of the rule, while the right-hand side R de-
scribes the post-conditions. L∩R (the graph part that is not
changed) and the union L ∪ R should form a graph again,
i.e. they must be compatible with source, target and type
settings, in order to apply the rule. Graph L \ (L ∩ R) de-
fines the part that is to be deleted, and graph R \ (L ∩ R)
defines the part to be created.

By way of an example, Fig. 4(3) shows pre- and post-
conditions of the activity “Book leg”, which can be inter-
preted as a graph rule. The numbers indicate the mapping
between left- and right-hand sides. The attribute conditions
are interpreted as an instantiation of variables on the left-
hand side, and attribute assignment on the right-hand side.

A graph transformation step is defined by first find-
ing a match m of the left-hand side L in the current in-
stance graph G such that m is structure-preserving and type-
compatible. If a vertex embedded into the context is to be
deleted, edges that would not have a source or target vertex
after rule application might occur: these are called dangling
edges. There are mainly two ways to handle this problem:
either the rule is not applied at match m, or it is applied and
all dangling edges are also deleted. In the sequel we adopt
the former strategy.

Performing a graph transformation step that applies rule
r at match m, the resulting graph H is constructed in two
passes: (1) build D := G \ m(L \ (L ∩ R)), i.e., delete all
graph items that are to be deleted; (2) H := D ∪ (R \ (L ∩
R)), i.e., create all graph items that are to be created. A
graph transformation, more precisely a graph transforma-
tion sequence, consists of zero or more graph transforma-
tion steps.

The applicability of a rule can be further restricted by
additional application conditions. The left-hand side of a
rule formulates some kind of positive condition. In cer-
tain cases, negative application conditions (NACs), which
are pre-conditions prohibiting certain graph parts, are also
needed. If several NACs are formulated for one rule, each of
them has to be fulfilled. See, for example, rule “Pay flight”
in Fig. 4(5), which has two NACs, one forbidding the flight
to be paid for to be a leg of another flight, and one checking
if the flight to be paid for has already been paid for.

As an example of a graph transformation step, we con-
sider again the rule “Book leg” in Fig. 4(3) and the host
graph in Fig. 5(b). There are different ways of matching the
rule to the host graph, depending on which flight leg is used.
Choosing the left flight leg, the NAC (indicated by dashed
lines in Fig. 4) is not fulfilled. Thus, the rule can only be
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(a) (b)

Figure 5: Type Graph (a) and a Coherent Instance Graph (b) of the Travel Agency Example

applied to the right flight leg. The result is the host graph in
Fig. 5(b) with an additional “books”-edge to the right flight
leg.

A set of graph rules, together with a type graph, is called
a graph transformation system (GTS). A GTS may show
two kinds of non-determinism: (1) For each rule several
matches may exist. (2) Several rules might be applicable.
There are techniques to restrict both kinds of choices. The
choice of matches can be restricted by either letting the user
specify part of the match using, for example, input parame-
ters, or by explicitly defining a control flow over rule appli-
cation.

The tool environment AGG (Attributed Graph Grammar
System) [1] can be used to specify graph transformation
systems and analyze their rules. Moreover, the rules can
be tested by applying them to possible instance graphs.

3.3 Conflict and Dependency Analysis

One of the main static analysis facilities for GTSs is
the check for conflicts and dependencies between rules and
transformations, both supported in AGG. The dependency
analysis and a critical pair visualization have been added
recently, partly motivated by the aspect-oriented composi-
tion analysis presented in this paper. The conflict analysis
has, for example, been applied to identify conflicts in func-
tional requirements in [15]. In this paper, we argue that the
existing theoretical results for graph transformation can be
used for analyzing potential conflicts and dependencies in
aspect-oriented modeling.

As discussed in the previous section, graph transforma-
tion systems can show certain kinds of non-determinism.
Considering the case where two graph transformations can
be applied to the same host graph, the result might be the
same, regardless of the application order. Otherwise, if one
of two alternative transformations is not independent of the
second, the first will disable the second. In this case, the
two rules are in conflict. Conversely, two transformations

are said to be parallel independent if they modify different
parts of the host graph. Instead, sequential independence
guarantees that the order of application in a transformation
sequence does not matter, i.e. performing the first transfor-
mation does not disable the second.

Analyzing the conflicts and dependencies of graph trans-
formations can be compared to testing a program at run
time. The analysis would have greater value if conflicts and
dependencies could be detected during compile time, i.e. if
it were e a static analysis. A promising approach in this
direction is the analysis of potentially conflicting situations
by critical pairs. A critical pair is a pair of transformation

steps G
p1,m1 +3 H1 , G

p2,m2 +3 H2 that are in conflict, and
host graph G is constructed based on overlapping L1 and
L2, the left-hand sides of rules p1 and p2. The set of critical
pairs represents precisely all potential conflicts, i.e., there
exists a critical pair as above if and only if p1 may disable
p2 or, conversely, p2 may disable p1. Conflicts can be of the
following types:

delete/use : The application of p1 deletes a graph object
that is used by the match of p2.

produce/forbid : The application of p1 produces a graph
structure that a NAC of p2 forbids.

change/use : The application of p1 changes an attribute
value of a graph object that is used by the match of p2.

A delete/use conflict is shown, for example, in Fig. 6.
Applying “Pay flight” to the host graph shown at the bottom
of the figure, rule “Redeem flight” becomes non-applicable,
because “Pay flight” deletes the “books”-edge which is
needed for the application of “Redeem flight”.

Another conflict occurs if a Customer has booked both a
Flight and a Rental and wants to redeem loyalty points from
her/his BonusAccount for both. The rules “Redeem flight”
and “Redeem rental” change the same attribute “bonus”.
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Figure 6: Critical Pair “Pay flight”, “Redeem flight” in AGG

(See the pre- and post-conditions in Fig. 4(9) and imag-
ine corresponding rules for the instantiation of “Travel” to
“Flight” and to “Rental”, respectively.)

Critical pair analysis can also be used to find all potential
dependencies among rules. In fact, a rule p1 may enable p2

if and only if there exists a critical pair between p−1
1 and p2.

Consequently, the following dependencies are possible:

produce/use : The application of p1 produces a graph ob-
ject that is needed by the match of p2.

delete/forbid : The application of p1 deletes a graph ob-
jects that a NAC of p2 forbids.

change/use : The application of p1 changes an attribute of
a graph object that is used by the match of p2.

In the sequel, we use critical pair analysis to detect con-
flicts and dependencies among cross-cutting specifications.

4 Analysis of the Travel Agency Example
In the previous section, we introduced graph transfor-

mation as the theoretical foundation for detecting conflicts
and dependencies between activities specified with pre- and
post-conditions.

We computed all potential conflicts and dependencies for
the travel agency example. The results are presented with a
conflict (cf. Fig. 7) and a dependency (cf. Fig. 8) matrix.
The first column and first row contain the list of all rules.
The number specifies how many different conflicts/depen-
dencies were found.
• Conflict matrix: a positive entry indicates that column

entry A disables row entry B; B is in conflict with A.
• Dependency matrix: a positive entry means that column

entry A enables row entry B; B is dependent on A.
In the conflict matrix, each activity is in at least one

conflict with itself, which is typical for changes effected
once. They can be ignored in the following. Many conflicts

Figure 7: Conflict Matrix in AGG

Figure 8: Dependency Matrix in AGG

and dependencies which are caused by changes to attributes
will not be considered in the following, since they do not
cause any effect. The matrices can be used for validating
the internal consistency of a single use case. For example,
“Add insurance” is disabled by “Pay rental” but never oc-
curs after it in use case “Buy flight”.

In the sequel, we analyze conflicts and dependencies in
the context of the aspect-oriented composition specification
(cf. Tab. 1). We apply the following heuristics to check
the aspect-oriented composition of two use cases for con-
sistency, thus relationships with (activities from) other use
cases are not considered. It is assumed that the composed
activities work in the same context, i.e., the pre- and post-
conditions overlap in the object graph. In general, a poten-
tial conflict might not lead to a concrete conflict.
• For after, the aspect activities must not be disabled by

the direct predecessor activity, and they must not disable
its direct successors.

• For before, the aspect activities must not disable the
preceded activity and must not be disabled by its direct
predecessors.
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Figure 9: Graph of Critical Pairs in AGG

• For replace, the aspect activities must not be disabled
by direct predecessors of the replaced activity and must
not disable its direct successors. If the replaced activity
enables successors, the aspect activities have to provide
the same enablements.

• In all cases, the aspect activities may only be disabled
by indirect predecessors if other indirect predecessors
provide corresponding enablements after disablements.
Similarly, aspect activities may disable indirect succes-
sors if these are enabled by other successors. Aspect
activities do not have to be completely enabled by the
use case with which they are composed.

Because of flattening the typing relation, we have to look
at four concretely typed compositions. We describe results
related to flights; rentals are similar. From the matrices, a
graph can be generated (cf. Fig. 9), containing a directed
edge B to A if B is in conflict (solid red) with or depen-
dent (blue dashed) on A. Undirected edges represent mutual
conflicts. In the graph, rules and critical pairs can be hid-
den, which we used to focus on the relevant conflicts and
dependencies.

Before-Composition: Use case “earn bonus” before
“Pay∗”. This use case contains “Earn flight” (flattened) and
“Create account”. “Earn flight” is disabled by “Pay flight”
but never occurs after it. None of the activities following
“Book flight” is disabled by “Earn flight”. “Earn flight” is
disabled by “Redeem flight”, which is however not part of
the composed use cases. Such dependencies would have to
be looked at in a greater context.

“Earn flight” is completely enabled by either
“Book flight” or “Book leg” and occurs after them.
Thus, bonus is earned for the flight and each leg. This
inconsistency is a kind of jumping aspect problem [6]. A
negative condition can prevent redeem from being applied
to a leg. “Create account” is enabled by “Create customer”
that occurs before it.

Replace-Composition: Use case “redeem bonus”
replaces “Pay∗”. This use case contains “Re-
deem flight” (flattened). “Pay flight” disables “Re-
deem flight” and vice versa. Using the graph, one
can easily find activities depending on “Pay flight”.
“Pay flight” enables ticketing but “Redeeming flight” does

not. “Redeem flight” states its post-condition in its own
domain, i.e. it inserts an edge “redeems”. To solve the
problem, also an edge “pays” could be inserted.

“Redeem flight” depends on “Book flight” and
“Book leg”. It is completely enabled by each of them
because it requires only an edge “books”. Thus, the bonus
is paid for the flight and each leg, which is undesirable
as discussed above. Also, “Redeem flight” depends on
“Create account”, an activity outside both use cases.

Applying the last heuristic can turn out to be a hard prob-
lem. The general question is whether the overall activity
diagram resulting from the composition conforms with the
overall conflict and dependency graph. In fact, conditional
branching and cycles in activity diagrams (and in the graph)
make it impossible to determine statically every enabling
or disabling action. AGG provides formal support to our
approximate solution of this hard problem.

5 Related Work
Conflict analysis based on graph transformation has been

applied in several contexts in software engineering. The de-
tection of conflicts in functional requirement specifications
was investigated in [15]. In this paper, we considered re-
quirement specifications developed with the use case-driven
approach. The motivation of this work was the early detec-
tion of conflicts within the software engineering process.
Another application in this area is the detection of conflicts
and dependencies in software evolution, more precisely be-
tween several software refactorings [22]. Both investiga-
tions use the critical pair analysis of AGG for detection.

A clustering of individual requirements within the speci-
fication of the behavioral characteristics of a system is often
called a feature [28]. The notion of feature, while natural in
the “problem domain”, is not always present in the “solution
domain”. In fact, researchers in feature engineering pro-
pose promoting features as “first-class objects” within the
software process in order to bridge the gap between the user
needs and design or implementation abstractions. However,
in general features are not independent of each other nor
necessarily consistent. Finkelstein et al. [14] proposed a
framework for tracking relationships among different view-
points of a system, according to the goals pursued by the
different stake-holders involved in the system development.
By contrast, our analytical approach aims to detect incon-
sistencies and interactions as early as possible in order to
avoid them.

In [3], Araújo et al. describe non-aspectual requirements
as sequence diagrams and aspectual requirements with in-
teraction pattern specifications, which are both woven to-
gether in state machines that can be simulated. No support
for static conflict detection is provided.

Nakajima and Tamai [23] use Alloy [17] to analyze in-
teractions among role models, taking into account object-
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oriented refinement and aspect-oriented weaving.
Several researchers are working to find interactions at the

programming level, normally in AspectJ code. Specific pro-
gram analysis techniques for AspectJ programs were pro-
posed [32, 5] in order to determine whether two aspects in-
terfere. Clifton and Leavens [7] propose classifying aspects
in observers, which do not change the system behavior, and
assistants, which participate actively in the global compu-
tation. Similarly, Katz [20] proposed using data-flow anal-
ysis to identify spectative, regulative, and invasive aspects.
These techniques can be used to automatically extract mod-
els of the code, which can be used to verify that expected
properties of the system hold [26, 31, 29, 8]. Douence et
al. [9] introduced a generic framework for aspect-oriented
programming supporting pointcuts with explicit states, and
they provided an abstract formal semantics of their aspect
language: this allows the detection of aspect interference.

6 Conclusion
A key problem of aspect-oriented composition is the use

of quantification, which makes it more difficult to reason
about than in purely object-oriented models. In this pa-
per, we present an approach for detecting conflicts and de-
pendencies in behavioral specifications of use cases refined
with activity diagrams. We use pre- and post-conditions for
activities to make the modeling more rigorous. Specifying
pre- and post-conditions may require an additional effort but
pays off if an early formal analysis is required. The number
of activities used to refine use cases highly depends on the
process and the context in which the software is developed.
However, the analysis of pre- and post-conditions is not re-
stricted to activities, but can also be applied to methods and
to a wide range of aspect-oriented modeling techniques if
they are enhanced by pre- and post-conditions, which are a
universally applicable technique.

In our approach, we use graph transformation as a for-
mal technique to give the chosen UML variant a formal
semantics and to analyze it rigorously. Detected conflicts
and dependencies are potential ones that might occur in the
system but do not have to. Nevertheless, the formal tech-
nique helps to make the problems explicit. It directs the
developer to the problematic parts of a model. It helps in
understanding aspect-oriented compositions and it helps in
reasoning effectively about the cross-cutting. Graph trans-
formation also allows us reason uniformly about object and
aspect models.

Support for analysis of the conflict and dependency
graph is definitely needed in order to apply the ideas to
larger examples. The analysis of conflicts and dependen-
cies can be carried out with the tool AGG, a tool for speci-
fying and analyzing rule-based transformations of typed at-
tributed graphs. Since the analysis functions are provided
with a Java API, AGG is ideal for use with existing UML

CASE tools. Furthermore, incremental analysis would be
desirable and feasible in such a setting.

The presented approach can be applied in two ways. It
can be used to validate an aspect-oriented design by com-
paring operators with conflicts as demonstrated in this pa-
per. It can also be used to propose aspect-oriented compo-
sitions by deriving them from conflicts and dependencies.

The approach presented is not restricted to functional as-
pects only. So-called non-functional aspects can also be
mapped to functional specifications in terms of pre- and
post-conditions on the state of a system. This also enables
interactions between functional and non-functional aspects
to be automatically analyzed.
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