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Abstract

Traditional support tools for software engineers, normally based on a client-server
architecture, are unsuitable to deal with the new issues emerging from the current
(and future) cooperative work scenarios (where connectivity is intrinsically tran-
sient, the number of interacting partners dynamically changes, etc.). This paper
presents a quantitative assessment of a fully decentralized, peer-to-peer, coopera-
tive infrastructure. Stochastic Well-Formed Nets (SWNs) modelling the new peer-
to-peer architecture, and a traditional (client-server) one, are developed and anal-
ysed: we used SWNs for their ability to directly exploit the symmetries intrinsically
present in the modelled systems, thus greatly reducing the complexity of the analy-
sis. The main goal is to compare the impact of the two alternative protocols on the
collaborative work. Together with the performance figures of interest, methodolog-
ical issues concerning the choice of the most appropriate model abstraction level,
the adoption of a compositional modelling approach, and the management of the
model complexity are also discussed.
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1 Introduction

Nowadays the Internet infrastructure is so pervasive that it is common that
people connect their laptop computer from a range of different locations: office,
home, the hotel hosting them for a conference, or the meeting room where they
are working. This is sometimes called mobile computing and it forces designers
of applications to take into account two new requirements: (1) users may
connect to the network from arbitrary locations (usually with different network
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addresses), and (2) they are not permanently connected. Thus, connectivity is
intrinsically transient, and machine disconnection is not an exceptional case,
but the normal way of operating.

Collaborative work over the Internet is often pursued by manipulating
electronic artifacts that are shared with others by exploiting the mediation of
some server. This scenario is still common and useful in several cases. How-
ever, since work activities are no more exclusive of office settings, users are
often forced to work without any Internet connection. Thus, network applica-
tions that rely on servers are sometimes not desirable or even not feasible. In
other words, the client/server approach is possible, and common, in all cases
where a reliable and permanent network infrastructure is available to connect
the participating nodes. However, in many cases, people would like to col-
laborate while they are supported through a much looser architecture, since
they cannot or do not want to afford the cost of setting up a central server.
The resulting reference architecture is a network of peers, each of which con-
tributes to the overall logical structure in an equivalent way. Moreover, peers
cannot be assumed to be always on-line, i.e., a peer is not always reachable by
others. Since the network connection is intrinsically intermittent, peers may
dynamically join and leave an ad-hoc community. They join it in impromptu
meetings, where they synchronize their works.

We focussed our investigation on the collaborative work needed to produce
software systems. Software developers typically collaborate by exchanging
and sharing a number of files. Files are assigned to people according their
responsibilities in the project. However, besides the person in charge of a file,
several other collaborators sometimes need to view or modify it. In general,
for each item we can identify the role of an owner, i.e., the individual who
has created the artifact or who is in charge of carrying out the work on it.
Moreover, there is a number of other collaborators involved in the project who
need to manipulate items that are not under their direct control, i.e., artifacts
they do not own. System designed to help software developers in keeping their
work coherent and tracking the evolution of artifacts are called configuration

management tools.

The underlying architecture of these tools affects the ongoing collaborative
work. In fact, a server based solution forces people to keep their work consis-
tent with the copy on the server machine. In traditional, client/server version
management tools, two (or more) persons may work on the same artifact (a
file): both are required to check-out the artifact from the server machine and
after any modification it has to be accepted on the server machine by trying a
commit (or check-in) operation. Different control policies for concurrent work
are possible. Artifacts could be locked by the system while people are mod-
ifying them, in order to avoid concurrent modifications. Instead, optimistic

concurrency control [9] means that if Alice and Bob are both working on foo.c

and Alice commits her new version in the central repository, when Bob tries
to check-in his own modified version he gets a conflict from the server and he
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must merge his modifications with Alice’s ones before trying a new check-in.

PeerVerSy [1] is a version management tool that allows users for freely
accomplishing their computations and collaborative actions as check-in and
check-out also when they are not able to communicate with the machine that
holds the reference copy of an artifact. Concurrency control is basically op-
timistic and an automatic reconciliation step is performed when connection
is established again, possibly arising conflicts. The client/server approach as-
sumes the availability of the network infrastructure even in the frequent case
that no concurrent work is done on a particular item. It is perfectly reasonable
and desirable that one could check-in a file which is under his/her control if no
other developers want to manipulate it. Similarly, check-out operations can be
performed also when the latest version of an artifact is available somewhere–
not necessarily on repository servers– but for example on the local file system
or on the file system of any connected node.

In the PeerVerSy approach there are no well known servers. Instead, it
is based on the notion of the authority for a set of items (it owns them),
and the copy of an artifact owned by the authority is the master copy. In
addition to the master copy, other peers can keep a local copy (replica) of
the documents they do not own in order to allow users to work on them even
when the authority is not reachable or when the peer is disconnected from the
network. In fact, a user can perform both check-in and check-out operations
also from the local copies of a document and the only difference between the
master copy and a replica is that a check-in of a new version becomes definitive
and available for all users only when the authority accepts the changes and
updates the master copy.

Intuitively, the peer-to-peer protocol may affect the number of conflicts
generated during the collaboration. The analysis described in this paper aims
at comparing the performances of a server based optimistic protocol with the
PeerVerSy protocol. In particular, we wanted to measure the impact of the
underlying architecture on the frequency of merge operations. In our experi-
ence with the tool we found that PeerVerSy was extremely attractive for small
(< 10 people) groups of developers. In fact, specially when several organiza-
tions are involved (as it is often the case in academics and research settings), is
sometimes unsuitable to set up a server based configuration management tool:
a solution that allows people for using their own machine, installing and con-
figuring the program on their own responsibility is much more appealing for its
improved flexibility. Moreover, users are happy to be able to freely cooperate
wherever they want, and even work at home without any Internet connection.
However, we wanted to be able to assess the impact of the approach on the
work in a quantitative fashion, out by means of stochastic models. Although
initially a simple simulation environment for PeerVerSy was set up [11] (on
which a preliminary evaluation of the system was performed), we eventually
preferred modeling essentially because, notwithstanding approximations in-
trinsic in both approaches, due to unavoidable abstractions in the system
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representation, whenever the analytical model solution is feasible it is more
accurate and allows a cheaper and more flexible assessment of the efficiency
of the two alternative approaches for several and dynamically changing work
scenarios. It is worth noting that our goal was to assess the impact of the pro-
tocol on collaborative work. Thus, our model completely ignores the efficiency
of the implementation and the load of the network. Moreover, reliability of
links and peers is not modeled: instead we just consider peers as on-line or
off-line with respect to the Internet.

A critical issue concerns the detail level of the models, that when perform-
ing analysis must be carefully chosen in order to avoid state space explosion.
The formalism adopted for the modeling and analysis is a colored flavour of
stochastic Petri nets called Stochastic Well-formed Nets (SWNs) [4]. Both
quantitative and qualitative analysis can be performed on these models. The
peculiar feature of SWNs is that due to the particular syntax adopted for the
model color structure behavioral symmetries can be automatically discovered
and exploited to build an aggregate state space and corresponding stochastic
process (a lumped Continuous Time Markov Chain).

The paper is organized as follows: In Section 2 the SWNs formalism is in-
troduced; in Section 3 the models of the client-server and peer-to-peer proto-
cols for collaborative work are presented; some methodological issues involving
the adopted modelling approach are discussed; in Section 4 we present and
comment on performance indices derived from the model steady-state analy-
sis: these indices allow us to assess the impact of the two alternative solutions
on cooperative work scenarios characterized by small group of developers; the
complexity of the model analysis, both in terms of memory (state-space ex-
plosion) and time, is also addressed. Finally, in Section 5 we summarize the
main results achieved and we outline possible directions for future work.

2 Stochastic Well-formed Nets

We recall here only the basic notation and concepts about the SWN formalism
needed to understand the models presented in the paper. We assume that the
reader is familiar with the PN and Generalized Stochastic PN formalisms [3]
(GSPN, the unfolded version of SWN), and has some basic knowledge of high
level PN (HLPN) extensions [8] (see [4] for a complete definition of SWNs)

As in all HLPN formalisms, tokens in places are associated with an iden-
tifier (color), similarly transitions are parameterized, so that different (color)
instances of a given transition can be considered for enabling and firing. Arc
functions associate each transition instance with a multiset of colored tokens
to be withdrawn from/put into a place.

A SWN model is a eleven-tuple

(
P, T, C, C, W+, W−, H, Φ, Π, Ω,M0

)
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where P is the set of places, T is the set of transitions, C = {C1, . . . , Cn} is
the set of basic color classes, each basic color class Ci is a finite, non empty
set of colors. Each basic color class can be partitioned into static subclasses
Ci,1, . . . , Ci,k, if it is necessary to make a distinction among groups of colors of
the class. The splitting of basic classes is necessary to represent asymmetric
qualitative and/or quantitative behaviors of components of the same nature
4 .

C is a function associating a color domain to each place and transition. A
color domain is defined as the Cartesian product of basic color classes (the
same color class may appear several times in a color domain), hence the color
associated with tokens in place p as well as the color instances of a transition
t, take the form of tuples of basic color class elements.

The color domain of t is implicitly defined by the set V ar(t) of variables

inscribing the arcs (whose kind may be input, output and inhibitor - I, O, H)
surrounding t. Each variable (that may be also seen as a projection function)
refers to a given basic color class Cxi

. The color domain C(t) is defined as
Cx1

× . . . × Cxm
, xi ∈ V ar(t). A color instance of t ((t, c)) can thus be

interpreted as a consistent assignment of colors to the variables in V ar(t).

W−, W+ and H represent respectively the input, output and inhibitor
arcs of the model, and the associated arc functions. The function f on an
arc connecting place p and transition t is defined as f : C(t) → Bag(C(p))
where Bag(A) denotes the set of all multisets that can be built on set A; the
syntax for expressing such functions takes the form of a sum of weighted and
guarded tuples of elementary functions defined on the basic color classes. The
allowed elementary functions are the the projection, selecting one element of a
transition instance color tuple (projection symbols can be arbitrarily chosen:
e.g., in our examples we use symbols x, y, st, . . .), and the diffusion constant
functions, returning the set of all elements in a given basic color class (S) or
in a given static subclass (S Ci,j)

5 .

Φ is a T-indexed function, expressing each transition guard: a guard is
used to restrict the set of admissible color instances of a transition, to those
satisfying a given predicate. The predicate must be expressed as a boolean
expression whose basic terms are standard predicates, representing simple con-
ditions on the transition instance tuple elements. Standard predicates are
defined to test either equality of pairs of colors bound to variables in V ar(t)
(e.g., x = (<>)y), or to check the membership of a color to a specified static
subclass (e.g., d(x) = (6=)Ci,k).

The transition priority Π is a T indexed function associating a priority
level (in N) to each transition; priority level 0 is reserved for timed transi-
tions (graphically represented as white boxes), while all other priority levels
are for immediate transitions (graphically represented as black bars), which

4 A basic color class may be circularly ordered, but for simplicity we omit this part of the
definition here, being not used in our models.
5 The successor of a projection is also allowed on ordered basic color classes.
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fire in zero time; conflicts between transitions with different priority level are
deterministically resolved in favor of the transition with higher priority. Fi-
nally Ω is a T indexed function assigning a firing rate to each timed transition
t (Ω(t) is the rate of the exponential pdf characterizing the random firing
delay associated with t) and a weight to each immediate transition, used to
probabilistically characterize the conflict resolution policy between immediate
transitions with equal priority.

A transition instance (t, c) has concession in marking M iff

(i) for each input place p of t W−(t, p)(c) ≤ M(p) ∧

(ii) for each inhibitor place p of t H(t, p)(c) > M(p) ∧

(iii) Φ(t)(c) = true;

(the >,≤ relations and the+,− operations are implicitly extended to multi-
sets).

A transition instance (t, c) is enabled in marking M if it has concession in
M and no other transition instance with higher priority has concession.

A transition instance which is enabled in marking M can fire, leading to
the new marking M′:

∀p ∈ P,M′(p) = M(p) + W+(t, p)(c) − W−(t, p)(c)

Here we only recall that as a result of the adopted time representation, the
reduced Reachability Graph of a SWN (the graph obtained by suitably remov-
ing the vanishing markings, i.e., those markings enabling at least one imme-
diate transition) is isomorphic to a Continuous Time Markov Chain (CTMC)
(see [4] for a detailed discussion).

The peculiar characteristic of SWNs is that (due to the particular syn-
tax adopted for color domains, arc functions, and guards) behavioral sym-
metries can be automatically discovered and exploited to build an aggregate
state space (called symbolic reachability graph or SRG) [5] and corresponding
stochastic process (a lumped CTMC). However in order to fully character-
ize the underlying stochastic process, the immediate transitions priority and
weight specification must be properly specified by the modeler (see [3] for a
discussion of this topic concerning GSPNs).

3 The SWN models of two alternative architectures

In this section we present the SWN models of the client-server architecture
adopted by consolidated configuration management tools, and the (new) peer-
to-peer architecture implemented by the PeerVerSy tool. The models have
been built to estimate the impact of the two approaches on small groups of
developers freely cooperating, and intermittently connected to some network
infrastructure (a LAN, the Internet, etc.). The starting point for producing
models has been the PeerVerSy architecture specification [1], a mix of pseudo-
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code and natural language, integrated with some UML diagrams.

The SWN models have been developed and analyzed (by means of the
GreatSPN tool [6]) by the following steps: (1) first the model of the client-
server architecture was built; (2) the (complex) model of the peer-to-peer
architecture was defined by adopting a consolidated compositional approach,
based on place superposition, supported by the GreatSPN tool [2]; (3) a sub-
model was refined to represent the infrastructure that realizes the distributed
repository of artifacts; (4) since submodels (and the overall models as well) are
fully parametric, we made explicit the relations among component parameters.
The main model parameters are:

• the number of cooperating workers,

• the number of artifacts on which workers collaborate,

• the association between a set of artifacts and one worker who plays the role
of authority for them.

Parameters are instantiated by properly defining the model color domains and
the initial marking.

Throughout our work (e.g., in step (2)) we tried to establish a relation
between different abstraction levels: a thorough discussion on how behavior

inheritance notions can be used to establish consistency relationships between
(sub)models at different abstraction levels may be found in [14] (by which we
have been inspired).

Concerning the abstraction level of models, we observe that very detailed
models (although may be very useful for integrating and completing the ex-
isting documentation) are hardly treatable for performance analysis because
of the state-space explosion they trigger.

The following issues have been considered in choosing a convenient abstrac-
tion level for our models: (I) whether to represent the underlying communica-
tion infrastructure and resource contention (for CPU usage and communica-
tion links), (II) whether to represent a single artifact or a set of artifacts shared
by the group of developers (the former situation being better supported by
the client-server architecture, while the latter one by the peer-to-peer architec-
ture), (III) whether to consider possible failures of the communication links or
of the nodes of the network (obviously the client-server architecture presents a
single point of failure, while the peer-to-peer architecture is intrinsically more
fault-tolerant).

In this paper we decided to not consider neither the communication in-
frastructure nor the possible occurrence of faults. We focused indeed on the
precise description of the client/peer life cycle. Moreover, we restrict our anal-
yses to collaboration based on a single artifact. These simplifications on one
side allowed us to study the performance of many more configurations than
those manageable on the detailed models by the GreatSPN tool. On the other
side, coherently with the final goal of the paper (i.e., providing a first assess-
ment of the impact of the the peer-to-peer protocol on the cooperative work),
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they correspond to a worst-case assumption for the peer-to-peer architecture.

Another motivation for studying the system behavior with explicit repre-
sentation of resource contention and/or in presence of faults separately, stems
from the observation that the specification of related stochastic parameters
(differing for several magnitude orders from the parameters characterizing
user activities such as check-in and check-out) should cause stiffness in the
underlying stochastic process.

Basic Color classes

Both SWN models have two basic colour classes: UID, denoting the group
of cooperating workers, and ST denoting the possible status (online,offline) of
a worker (ST is accordingly partitioned in two static subclasses on,off each of
cardinality one). The cardinality of class UID is one of model’s parameters. In
addition, the SWN model of the peer-to-peer configuration tool has the basic
class UPD, which denotes the status (updated,non-updated) (corresponding
to the UPD’s static subclasses upd,noupd) of the local copy of the artifact
owned by a given worker. 6

3.1 The SWN model of a traditional versioning system

The SWN model of the client-server architecture for a configuration manage-
ment tool is depicted in Figure 1. In both models, timed transitions represent
time-consuming activities (time being spent for decision and/or execution),
while immediate transitions represent logical (sequences of) actions. On-line
and off-line periods of a client/peer are also represented by means of a timed
transition.

Color domains of the model

Let us briefly comment on the definition and the interpretation of the place
and transitions color domains (the discussion made here applies to a consistent
part of the peer-to-peer architecture’s model). All places of the net but place
Status have color domain UID: a token 〈u1〉 in one of these places represents
that worker u1 has reached a particular status of his/her life-cycle.

In the real world, each client checks out a working copy with a specific
version number, and by comparing this with the version of the last copy of
the artifact on the server he is able to establish the up-to-date status. In
order to exploit the symmetries of the model, we chose not to use the version
numbers but to directly maintain the up-to-date status information in the
place uptodate.

Place Status has color domain C(Status) = UID × ST : a token 〈u1, on〉
in Status, for example, means that u1 is currently on-line.

6 In the client-server model the up-to-date status of the artifact is denoted by the marking
of the homonym place
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Status
UID,ST M0Status
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<x><x>
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<x> <x><x>

<x>

<x>

<x>

Fig. 1. The SWN model of a server-based version system

The set of model’s timed transitions has color domain UID: a color in-
stance of any transition in this group represents a particular action performed
by a given worker during his/her life-cycle. These actions may be accom-
plished by on-line users only, because they require the access to the server.
The only notable exception is the modify action that can be accomplished
off-line on a previous checked-out version of the artifact.

Timed transition ChangeStatus has color domain C(ChangeStatus) =
UID×ST×ST : a color instance 〈u1, s1, s2〉 means that the current connection
status (s1) of a worker (u1) changes (the new status being s2) with a given
frequency, that is one of the timing parameters of the model. In other words,
transition ChangeStatus models the online attitude of the workers.

The two immediate transitions {t8, t9} (having color domains UID×UID
and UID, respectively) permit us to keep coherent and correct the up-to-date
status information after the check-in operations. In particular the cumulative
effect of the firings of such transitions as consequence of a check-in is to empty
the uptodate place except for the token with the user-id (UID) of the client
that accomplished the check-in action.

3.2 The SWN model of a peer-to-peer version system

The SWN model of the peer-to-peer architecture for a configuration manage-
ment tool is depicted in Figure 2. It comprises two main parts, each enclosed
in the picture within a dashed box: i) the representation of the main peer
life-cycle, obtained by simply refining the SWN model in Figure 1, ii) the
representation of the infrastructure reaction to a peer that goes online.

With respect to the client-server architecture’s model, places Repository
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and WCopyUpdated extend the uptodate place considering not only the status
of the explicitly checked out copy (WCopyUpdated), but also the status of the
repository replica automatically managed by the PeerVerSy infrastructure.
The Repository place has color domain UID × UPD (a new color domain):
a token 〈u1, noupd〉 in place Repository means that the working copy owned
by u1 is not updated.

Finally another place (UpdEvent) has been added in order to represent
the fact that the system sends a signal to a peer that a new version of the
artifact is available. We highlight here that this is an important peculiarity of
the PeerVerSy system: it makes aware the peer as soon as possible that the
working copy is not still up-to-date. Using such an information, the peers are
sometime able to avoid modify actions on old versions of the artifact.

The updating of these three places is managed automatically by the in-
frastructure. In particular the upper part of the net represents what happens
when a peer goes online. In the case that the version of such a peer is newer
than those of the already on-line peers, the repository replica of such peers are
automatically updated and a “New version” signal is sent to them. On the
contrary in the case that the peer copy is older, its repository is updated and
he receives the signal. This signal is thus an indication that the repository
replica contains a more recent version of the checked out working copy. The
bottom part of the net represents what happens when a check-in is accom-
plished: the working copy status of all the other peers is set to non-uptodate.
The repository replica status of all the off-line peers is set to non-uptodate. A
new version available signal is sent to all the online peers. All the conflicting
pending check-in are then aborted (fail transition). Finally is also considered
the case that the check-in is accomplished by the authority when he/she is
off-line. In this case no signal is sent and all working copies and repository
replica are set as non-uptodate.

Regarding the peer life-cycle (sub)model, we had to differentiate the au-
thority from normal peers in some operation because the prerequisites are dif-
ferent (e.g., the authority can accomplish a check-out, or a succeeding check-in,
also if he/she is off-line). However the main change is in the check-in action.
In fact this becomes a complex operation that is executed in several steps. In
particular the peer can issue a check-in request also if he and/or the authority
are not currently on-line. The status of such check-in is thus pending, waiting
for a condition in which it is possible to evaluate whether the check-in suc-
ceeds or not. Several conflicting check-in can be at the same moment in the
pending status.

4 Peer-to-peer against client-server: preliminary eval-

uation

Generally speaking, performance analysis of the SWN models can be used for
several purposes: (1) for model validation, in order to compare performance
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measures of models at different detail of abstraction: in this way the approx-
imation introduced by abstraction can be evaluated. (2) When comparing
the two alternative architectures, to have a first hint on the impact on the
reference scenario (small groups of users cooperating on the same document)
of the peer-to-peer protocol: the difference between the results correspond-
ing to alternative models allows one to derive some preliminary conclusions
on the merits and problems of each, even if the absolute measures are not
very precise. (3) In the model’s tuning phase, to achieve more accurate and
reliable performance indices: all approximations introduced in the modeling
phase should be carefully considered, and a validation of the model against
actual measures on prototypes should be performed. The results presented in
this section are examples of second and third model usage scenarios.

4.1 Managing the model complexity

Before commenting on the obtained performance figures (selected among a
number), let us describe the techniques we employed in order to manage the
complexity of the analysis performed on the SWN models presented in the
section above (in particular, of the peer-to-peer protocol model).

Exploitation of symmetries

The models we are considering in this study are highly symmetric, the
symmetry of a SWN model being measured by the splitting level of basic
color classes into static subclasses. We do appreciate that both models we
have developed are fully symmetric with respect the color class UID, which
means a potential reduction factor (with respect to the number of nodes of
the ordinary model’s RG) of n!, where n is the cardinality of UID.

In order to exploit the behavioral symmetries present in the models, how-
ever, we need to define a suitable initial symbolic marking (SM). The SM
notion makes it possible to define an equivalence relation between states in a
purely syntactical fashion: two ordinary markings are equivalent if they can
be obtained from each other by applying a permutation on the objects of split
color classes that preserves static subclasses. The SWN symmetry property
ensures that equivalent firing sequences can fire from equivalent markings.

Referring to the model in Fig.1 the formal representation of its symbolic
initial marking M̂0 is:

M̂0(Start) = 〈ZUID〉; M̂0(Status) = 〈ZUID, Zon〉
ZUID = n, Zon = 1.

The symbolic marking representation is given in terms of dynamic sub-

classes (ZUID, Zon in the example). Dynamic subclasses define a parametric

partition of static subclasses. Every dynamic subclass refers to a static sub-
class or to a whole basic class (in the event of non split class), and has an
associated cardinality. The symbolic marking above represents the system
configuration where all workers are in place (state) Start, and they are all

12
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on line. Note that it corresponds to exactly one ordinary marking (this is
a frequent situation for the initial SM). A Symbolic Firing Rule allows the
building of the Symbolic Reachability Graph (SRG) of the model, working
directly at the level of the SM representation.

The formal representation of the symbolic initial marking M̂0

′

of the model
in Fig.2 is a bit more complex:

M̂0

′

(Start) = 〈Z1
UID + Z2

UID〉; M̂0

′

(Status) =

〈Z1
UID + Z2

UID, Zon〉; M̂0

′

(Auth) = 〈Z1
UID〉

Z1
UID = 1, Z2

UID = n − 1, Zon = 1.

The marking M̂0

′

represents a generic system configuration similar to the one
described by M̂0 for the other model: it means in addition that one (arbitrary)
user is chosen as the authority for the artifact. The identity of the authority

is not fixed, so that M̂0

′

actually corresponds to a class of ordinary markings.
Since there are n different (equivalent) possible choices, we argue that in this
SWN model the actual reduction factor due to the symmetry exploitation
should be divided by n, i.e., it will be at most (n − 1)!.

Reducing the number of vanishing markings

Symmetry exploitation alone is not sufficient to make the analysis of the
model in Fig.2 manageable: due to the enormous number of vanishing SMs
generated during the model’s SRG construction (because of the frequent in-
terleaving among immediate transition firings), only configurations with very
small groups of users (< 4) can be actually analyzed. Structural analysis
techniques may significantly improve the effectiveness of state-space based
analysis. In [7] the basis for a symbolic approach to express structural rela-
tions in coloured nets is proposed. The main contributions provided in [7] are
the possibility to represent structural relationships between transitions, such
as conflict or causal connection, by means of algebraic manipulation of the
colour annotations of the net. They show how the theory may be practically
applied to the class of (colored) Unary PN to compute extended conflict sets

(ECS): ECS (originally defined in [3] for GSPNs) represent sets of immediate
transitions that are not independent, i.e., such that the firing of one transition
in the set may affect the enabling status or the firing probability of the other
transitions in the same set. This step on one side is essential to the correct
net-level definition of the stochastic process representing the behaviour in time
of stochastic Petri nets with immediate transitions (see [13]). On the other
side, it allows a drastic reduction of the number of vanishing markings gener-
ated during the construction of the reachability graph: transitions belonging
to different ECS may indeed fire according to an arbitrary order (fixed, for
instance, by assigning different priority levels to different ECS), without al-
tering the model (quantitative/qualitative) semantics. When considering high
level stochastic Petri nets (such as SWN), the dependency relation should be

13
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stated in a symbolic form, to characterize in a compact and parametric way
the color instances of a given (immediate) transition that can influence the
enabling/firing probability of other transition color instances.

The limit of the results presented in [7] is the restricted class of HLPN
that is treated. The structural analysis technique presented in [7] has been
recently extended to SWNs [10]. Such extension is based on a rather com-
plex formal treatment of the color annotations (arc functions and transition
guards) appearing on the high level model: the formal aspects of the calculus
is completely worked out in [12].

Let us only better explain the meaning of a structural symbolic relation,
by giving the formula describing the structural conflict relation between tran-
sitions t and t′ when they share an input place p:

SC(t, t′) = W−(t, p) − W+(t, p)
t
◦ W−(t′, p)

The first member W−(t, p) − W+(t, p) is the functional description of the
multiset of tokens actually removed from place p by the firing of an istance
of t. The support of such expression W−(t, p) − W+(t, p) maps the multiset
to which it is applied into the set taking those colours whose multiplicity is
strictly greater than zero. The transpose of W−(t, p) − W+(t, p) is a functional
description of the colours instances of t that actually removes tokens from p.

Concluding, applying W−(t, p) − W+(t, p)
t
to the set W−(t′, p) then the colour

instances of t removing from p some token for which t′ has need, are obtained.

In a similar manner it is possible to derive the functional description of
the other structural relations (indirect conflict, causal connection, mutual ex-
clusion) on which the ECS computation relies. By applying this structural
analysis technique on the model in Fig.2 we were able to partition the set of
immediate transitions into a number of independent ECS with different pri-
ority levels, so making the analysis of larger configurations of users feasible.

Removing transient markings

Another simple way for reducing (even if with a lower effectiveness than
the two techniques above) the state-space growth of the SWN model in Fig.2
stems from the particular structure of the model’s SRG. We can easily argue
that this SRG (for any n) is not strongly-connected, however it contains one

maximal strongly-connected component. A steady-state solution does exist,
where transient states (i.e. those SMs, as the initial one, that are not home-
states) have an associated null probability. We can thus skip xthe transient
part of the SRG, obtaining an equivalent (in terms of stationary probability
vector) stochastic process whose states have a non-null stationary probability.
This actually corresponds to skipping the checkout actions, and it is achieved,

for instance, by setting as initial SM of the SWN model M̂0

′′

:

M̂0

′′

(CleanCopy) = 〈Z1
UID + Z2

UID〉; M̂0

′′

(Status) =

〈Z1
UID + Z2

UID, Zon〉; M̂0

′′

(Auth) = 〈Z1
UID〉;
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M̂0

′′

(Repository) = M̂0

′′

(Wcopy) = 〈Z1
UID + Z2

UID, Zupd〉
Z1

UID = 1, Z2
UID = n − 1, Zon = 1, Zupd = 1.

The simplification just described is also justified by the transient analysis

made on the original model (that with initial marking M̂0

′

) by means of the
GreatSPN tools: the state probabilities computed for small values of the time
variable indeed shown a rapid convergence of the stochastic process towards
its stationary state.

The reduction steps sketched above allowed us to extend the analysis of
the peer-to-peer protocol to larger groups of workers. Table 1 shows the sizes
of the SRG (in terms of number of nodes) for the two models we developed,
faced to the corresponding RG sizes (divided by n). We do appreciate that
the reduction factor provided by the SRG is higher for the client-server model
than for the peer-to-peer model: this may be intuitively explained by the
need of distinguishing the authority-peer from the normal peers. The analysis
required 0.250s of CPU time with n = 2 and 310m with n07 on a Intel Xeon
2.4GHz. The data files generated by the GreatSPN tool with 8 members
exceeded the maximum file size (4GB) set on our machine.

Table 1
SRG vs RG

client-server peer-to-peer

] SRG (tang. + van.) RG (tang. + van.) SRG (tang. + van.) RG (tang. + van.)

2 63+33 119+66 115+302 230+604

3 399+270 2023+1521 1392+5429 8007+32049

4 1890+1515 31871+30012 10696+55297 223756+1235224

5 7287+6645 478807+543435 61365+394070 5535385+39720045

6 24136+24417 6998159+9326538 286014+2192326 126941010+1141070760

7 71093+78393 100630663+154400169 1139128+10153639 2767706963+30425540229

4.2 Performance figures

In Fig. 3 some results are shown about the performance of the client-server
configuration against the alternative peer-to-peer configuration. The plotted
curves refer to the average firing frequency (throughput) of checkin and merge

transitions, as a function of the number of cooperative workers (up to seven
peers/clients are considered), divided by the number of workers.

The merge frequency is a metrics that very closely reflects the additional
effort spent for recovery actions (whose quantitative evaluation being one of
main goals of our analysis), that is introduced by the lack of synchroniza-
tion typical of optimistic cooperative work scenarios. The checkin frequency
instead is related to the advances in the project development.

The curves here plotted refer to a “default” setting of timing parameters
(the same in both models), and have been chosen as representatives of a
possible general trend, that however should be confirmed by a more complete
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Fig. 3. Mean frequency of checkin and merge in the two alternative configurations

analysis.

Let us remark (and briefly comment on) the simplificative assumptions
that were made in setting the model’s timing parameters:

- all timed transitions are assigned the same firing delay, except for transi-
tion modify that (according to the actual complexity of the involved activities)
is assigned a double firing delay.

- any peer/client goes on-line and off-line with the same average frequency
(in other words: on-line and off-line periods are assumed to have the same
weight).

- we don’t differentiate the authority’s “work attitude” from that of normal
peers: this is (once again) a worst-case assumption for the peer-to-peer model,
since in a realistic scenario the authority is the main responsible of the artifact
and the one that more often modifies it.

Even if the simplifications above should be carefully considered, the qual-
itative trend outlined by the curves in Fig. 3 seems reliable. The main high-
lighted outcome is that (generally speaking) the peer-to-peer protocol behaves
in a satisfactory way, comparable to the server based solution. As expected,
the authority has a great advantage from the peer-to-peer solution. However,
other peers do not pay a big price for this. We experienced that changing
some stochastic parameters of the models (e.g., the rate of modify transition)
leads to significantly different absolute values, but same curves shape.

5 Conclusion and future work

In this paper we have reported some preliminary results of modeling activ-
ity concerning a new peer-to-peer architecture for configuration management
tools. A colored flavor of stochastic Petri Nets (SWNs) has been used, able to
exploit the model symmetries during the analysis phase, thanks to its struc-
tured syntax. Two SWN models have been presented: the model of the new
peer-to-peer architecture (called PeerVerSy), and the model of a traditional
client-server architecture. The contribution of the modeling activity has been
twofold: on one hand models can be considered as an integration to the avail-
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able documentation (specially as concerns the PeerVerSy tool); on the other
hand, they provide a first hint on the impact of the peer-to-peer protocol on
the reference cooperative work scenario (small groups of users cooperating on
the same document). Steady state analysis has been performed: a pair of
performance metrics characterizing the cooperative work have been computed
and discussed. The obtained results about the peer-to-peer configuration are
promising and deserve further investigations.

Some methodological issues have been also considered: in particular, we
focused on the techniques adopted for managing the model state-space ex-
plosion, and on the abstractions used both in the modeling phase and in the
setting of stochastic model’s parameters.

Besides on extending and completing the performance analysis here pre-
sented, we are currently working on a better characterization of the workers
behavior by including possible scenarios so far not considered (e.g., the possi-
bility of discarding the work done for example as consequence of a conflicting
check-in), and by differentiating class of workers (basically authorities and
normal peers). The consequences of a multiple documents (artifacts) scenario
are also under investigation.
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