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Abstract. This paper deals with computer supported cooperative work
in the context of untethered scenarios typical of mobile environments.
The scenario envisions a number of homogeneous peers that are able to
provide the same services, disconnect frequently from the net, and per-
form part of their work while disconnected. The application we choose is
Configuration Management (CM), a critical cooperative activity occur-
ring in software development. We discuss an implementation of a config-
uration management tool in a peer-to-peer setting, evaluate our solution
with respect to other systems, and draw conclusions for future develop-
ment.

1 Motivation

A computer aided cooperative work effort typically deals with in the production
of a number of software artifacts. Artifacts are parceled among collaborators.
The best application of the principle of division of labor would require that only
a worker manipulates each artifact. Unfortunately, this is never true. In general,
for each item we can identify the role of an owner, i.e., the individual who has
created the artifact or who has the duty of carrying out the work on it. However,
there are typically other workers who need or want to see or manipulate items
that are not under their control, i.e., artifacts they do not own.

A classical solution to coordination of people work relies on the existence of a
shared repository. Shared artifacts are stored in the repository and if one wants
to work on them, one has to check-out the needed artifact from the repository.
When the work session is over the artifact has to be checked-in the repository
again. According to this approach the repository becomes the centralized mean
of coordination among workers, thus check out and check in operations can be
controlled by enforcing agreed policies that ensure consistency of the collabora-
tive work.

In order to meet its requirements the repository has to be accessible by all
the workers, thus the traditional architecture is based on a number of servers
that provide the “repository service” to the client nodes that are in charge of
the work. This architecture relies on two assumptions:
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1. no off-line cooperation: check out and check in operations are performed only
while a network connection is available;

2. servers always alive: repository servers are always available on line when
check in and check out operations are needed.

The centralized repository assumption seems to be too restrictive in several
current scenarios based on mobility and continuous evolution. In fact, the re-
cent advances in the area of wireless networks and the popularity of powerful
mobile computing devices, such as laptops, PDAs, or even mobile phones, is fos-
tering the diffusion of a new form of distributed computing usually called mobile
computing. In this scenario, where users connect to the network from arbitrary
locations and typically they are not permanently connected. In a fully nomadic
scenario, no fixed network topology can be assumed. Machine disconnection is
not an exceptional case, but the normal way of operating. The pure client-server
paradigm, where some machines play the role of service providers for other ma-
chines, appears to be unsuitable to enable the required intrinsic dynamism. The
main disadvantage of client-server systems is that they are like little “solar sys-
tems”: the entire application orbits around the main server stars. When servers
are not reachable, the entire system is just a dead cold set of asteroids. As far
as cooperative work is concerned, this means that the entire service is blocked,
until servers arise again to bring new life in the collaborators’ work.

Instead we are going to propose an architecture where nodes might freely
accomplish their computations off-line. Of course, this requires some form of
reconciliation with the on-line part of the environment when disconnected ma-
chines later rejoin the network of nodes. To achieve this goal, we claim that the
presence of two classes of computational elements, namely, clients and servers, is
a weak point: a service cannot be exploited every time servers are not available.
Instead, when the topology of the network environment is not known a priori,
peer-to-peer settings where all nodes are peers, i.e. they are functionally equiv-
alent and any could provide services to any other [1] may provide the following
advantages:

– absence tolerance: the absence of a single peer, because of a fault or a vol-
untary disconnection, can be often compensated by the presence of other
peers;

– bandwidth economy: network links towards servers are typically the bottle-
necks of client-server environments, in particular if the number of nodes is
high. In a peer-to-peer setting the network topology can be conceptually
considered as a complete graph, and the traffic is more homogeneously dis-
tributed on all edges;

– ease of configuration: because in theory each peer acts both as a client and as
a server, it can customize the services it provides according some commonly
accepted protocol, without requiring a centralized supervision;

– efficient use of resources: popular resources (data and services) can be easily
replicated on several peers. Conversely, unused or obsolete resources could
be eliminated by the a decision of the subset of peers which was interested
in them.



These advantages are available at the cost of the loss of the centralized con-
trol. Nonetheless, it is possible and convenient to build middleware components
that provide primitives aimed at supplying a common framework where coordi-
nation and cooperation of peers is facilitated, and the changing network topology
is hidden. In this paper we assume the existence of such a middleware. In par-
ticular (see Section 3.1),we base our work on PeerWare, a middleware suitable
for peer-to-peer settings developed at Politecnico di Milano [2, 3].

This paper is organized as follows: in Section 2 we describe the requirements
for what we want from our support tool, in Section 3 we describe the architectural
structure of the tool, and finally, in Section 5 we draw some conclusions.

2 Requirements for the support tool

As an example of computer supported cooperative work we focus on software
development. Thanks to the increasing availability of distributed computational
infrastructures, software production is often dispersed among geographically dis-
tant locations, and software processes become necessarily network aware cooper-
ative processes. Software development environments, however, are still far from
supporting these new forms of virtual workgroups through specific network-
aware services [4]. In particular, consider the case of configuration management
(CM) tools. Software processes are typically supported by CM tools [5] that
help developers to keep consistent their work, and, despite of dynamic nature of
software teams, these are typically client-server applications [6]. As stated, the
availability of a repository machine is critical, because without it no check-out or
check-in operations are permitted. This is too restrictive because it assumes the
availability of the network infrastructure even in the frequent case that no con-
current work is done on a particular item. It is perfectly reasonable and desirable
that one could check in a file which is under his/her control if no other devel-
opers want to manipulate it. Similarly, check out operations can be performed
also when the latest version of an artifact is available somewhere, not necessarily
on repository servers, but for example on the local file system because no one
has checked in a newer version. However, these operations, while performed in
unthetered or even off-line mode, should be fully compliant with the cooperative
system policies. Thus, an off-line check in should version the artifact and, for
instance, satisfy a given set of requirements.

The main point is that in a highly mobile settings, disconnected work is no
more an exceptional case. A software development team, provided with laptops
and some kind of wireless connection, sets up impromptu meetings during which
they can, for example, correct bugs on the fly and merge the patches in the
baseline. Developers may wish to check out the modules they need also when
the owners are not connected to them. This, of course, requires the system to pro-
vide support for some caching policy. Similarly, check in should be a transparent
operation, which should not require knowledge of who is on-line when the oper-
ation is executed. A check in request should be executed asynchronously when
the owner of the item becomes available on-line. Finally, when new versions of



configuration items that are under one’s control become available on-line, a no-
tification should be submitted to all interested peers, to enable them to keep an
updated view of the system.

Consider the following scenario: a developer D wants to modify a source file f
owned by Z, but Z is currently off-line. However, this is not a problem, because
X, who is available on-line, has a recent version of f that can be downloaded by
D. In the meanwhile, Z is working (off-line) on f and she checks in a new version
f ′ of it. When Z reconnects herself with the rest of the system, a notification
of the existence of f ′ is submitted to the peers. If X now asks to check out f ,
the new version f ′ is downloaded, since the previously locally cached copy is no
more valid. If D decides to check in his modified version of f , a conflict arises,
which may be solved by a manual merge of the two independently developed
modifications of the same module.

Summing up our requirements, the configuration management tool should
provide the following features:

1. check-out: every work session starts with this operation. Configuration items
should be accessible also when owners are not connected, thanks to suitable
caching policies;

2. check-in: every work session ends with this operation. It should be possible
to check in items at any moment. However, the actual check-in is physically
carried out only when the owner is available. Since concurrent changes of a
configuration item are possible, this may generate conflicts. Conflict resolu-
tions, which may imply some manual merge, is performed when the owner
is on-line. Off-line and on-line check in operations are subjected to the same
policy rules.

3. change notification: when a peer joins the network, it notifies the changes
made to its own items since it last left off to all interested peers. In this way,
any cached copies kept by such peers become invalid.

3 An architectural view

In order to implement the requirements described in Section 2, the configuration
items repository must be distributed among all process participants, as showed
in Figure 1. In a process with n participants, the global repository R is composed
by the union of the local repositories Ri

R =
n⋃

i=1

Ri

Two different architectural choices are feasible:

n⋂
i=1

Ri = ∅ (1)



Fig. 1. Distributed repository of configuration items

n⋂
i=1

Ri 6= ∅ (2)

The choice (1) gives a system with no replicated information. This solution
allows efficient implementations (see for example DVS [7–9, 6]) and does not
introduce the risk of getting inconsistent replicated information. However, items
can be accessed only if the unique host that provides them is on-line, and this
does not satisfy our requirements about check-out.

In our system we preferred the choice (2) because by replicating information,
it enables cooperation also when some nodes are not available on-line. However,
more machinery to compose conflicts among different versions of configuration
items is needed. In order to settle conflicts we adopt a strategy similar to the
one used in the management of the distributed database of the Domain Name
System [10], in which the data regarding associations between IP numbers and
host names are replicated on several DNS servers. Each DNS server records some
associations known with certainty (authoritative associations) and some others
simply as remembered form previous accesses (cached associations). Whenever
a DNS server gets a request for a host for which it cannot give an authoritative
answer or that is not contained in its cache, it queries the network, possibly
ending up asking the authoritative server, who knows the correct answer.

In our system each peer is authoritative for the configuration items it owns,
and its copy of such items is the “master” copy. Every check-in of a new version
becomes definitive only if it is authorized by the authoritative peer. If a peer X
wants to check-in a document whose authoritative peer is A (6= X) two cases
may occur:



1. A is reachable by X: a check-in proposal is notified to A. A can reject the
proposal or commit to making it persistent in its local part of the repository
as a new master copy;

2. A is disconnected from X: a check-in proposal is recorded in the local part
of the repository hosted by X. When A becomes available, the proposal is
notified to it. A can reject the proposal or commit to making it persistent in
its local repository as a new master copy. If A has an item newer than the
one proposed by X, a conflict arises. Similarly, other concurrently pending
check-in requests generate conflicts. Conflicts must be managed by merging
the various change requests, and then issuing a new check-in proposal.

When a peer X wants to check-out a document d whose authoritative peer is A
(6= X) two cases may occur:

1. d is present in X’s the local repository and the copy is valid, that is, no
newer versions were notified to X. The check-out operation boils down to
getting a copy of d;

2. d is not present in the local part of repository under control of X: a network
search is issued to retrieve a valid copy. If no valid copy is found, the check-
out operation fails. Notice, however, that it may also happen that an invalid
copy is found, but the authoritative peer for the searched item is off-line. This
may happen when the authoritative peer gets on-line, notifies all interested
peer that a new version is available for a given item, and then immediately
gets disconnected from the network. In such a case, the cached versions of
the item become invalid, but at the same time the most recent version of the
item is unaccessible. We decided that, in this case, the check-out operation
retries the invalid copy.

Finally, when a peer enters the community of peers, a reconciliation step is
performed. More specifically, when X gets connected, for each item i for which
X is the authority, X notifies all interested peers if a newer version of i is
made available. In such a case, the locally cached copies of peers that are not
authoritative for the item become invalid.

In the next Section we sketch the middleware we used to implement the
operations we described here to support distributed configuration management.

3.1 The underlying middleware

PeerWare [2, 3] provides the abstraction of a global virtual data structure
(GVDS), built out of the local data structures contributed by each peer. Peer-
Ware takes care of reconfiguring dynamically the view of the global data struc-
ture as perceived by a given user, according to the connectivity state. The data
structure managed by PeerWare is organized as a graph composed of nodes
and documents, collectively referred to as items. Nodes are essentially contain-
ers of items, and are meant to be used to structure and classify the documents
managed through the middleware.



Fig. 2. An example of the PeerWare data structure managed by a peer

This means that nodes are structured in a forest of trees, with distinct roots,
which most likely represent different perspectives on the documents contained
into the data structure. For instance, one could have an “GNU/Linux projects”
tree, a “Latex papers” tree, and so on. Within this graph, each node is linked to
at most one parent node and may contain different children nodes (see for exam-
ple Figure 2). Conversely, stand-alone documents are forbidden; documents are
linked to at least one parent node and do not have children. Hence, a document
may be contained in multiple nodes. As for labels, two nodes may have the same
label, as long as they are not both roots and are not directly contained into the
same node.

At any time, the local data structures held by the peers connected to Peer-
Ware are made available to the other peers as part of the global virtual data
structure managed (GVDS) by PeerWare. This GVDS has the same structure
of the local data structure and its content is obtained by “superimposing” all
the local data structures belonging to the peers currently connected, as shown
in Figure 3.

Changes in connectivity among peers determine changes in the content of the
global data structure constituting the GVDS, as new local data structures may
become available or disappear. Nevertheless, the reconfiguration taking place
behind the scenes is completely hidden to the peers accessing the GVDS, which
need only to be aware of the fact that its content and structure is allowed to
change over time.

There is a clear distinction between operations performed on the PeerWare
local data structure and on the whole GVDS. While hiding this difference would
provide an elegant uniformity to the model, it may also hide the fundamental
difference between local and remote effects of the operations [11]. In particu-
lar the operations for creating or destroying a node (createNode(node, parent),
removeNode(node)), for inserting or removing a document (placeIn(node, document),
removeFrom(node, document)), and for publishing an event occurred on an item



Fig. 3. An example of the global virtual data structure managed by PeerWare



(publish(event, item)) are defined only on the local data structure. PeerWare
provides three operations that can be performed both on the local and the global
data structures:

1. I = execute(FN , FD, a). An action a is performed on all documents – con-
tained in nodes whose name matches the filter FN – that match the filter
FD. The matching set of documents I, affected by a is returned to the caller.

2. subscribe(FN , FD, FE , a). Allows a peer to subscribe to the occurrence of an
event matching the event filter FE and being published within the projection
of the data structure identified by the filters FN and FD. When the event
occurs the action a is executed locally to the caller.

3. I = execSubscribe(FN , FD, FE , ae, as). Executes an arbitrary action ae on
the projection of the data structure identified by FN and FD, similarly to
execute. Also, in the same atomic step, it subscribes for events that match
FE , and occur within the same projection, by specifying the action as that
must be executed locally to the caller, when one of such events occurs.

The semantics of a global operation can be regarded as being equivalent to
a distributed execution of the corresponding operation on the local data struc-
tures of the peers currently connected. While as far as concerns local operations
atomicity can be assumed, this is an impractical assumption in a distributed
setting. Hence, the global operations do not provide any guarantee about global
atomicity, and they guarantee only that the execution of the corresponding op-
erations on each local data structure is correctly serialized (i.e., it is executed
atomically on each local data structure).

The operations provided by PeerWare together with a publish/subscribe
engine on which PeerWare itself relies on (the distributed event dispatcher
JEDI, see [12]) build the framework needed to implement the configuration man-
agement operations described in Section 3. In particular, by using PeerWare
we can abstract from the actual network topology and perform actions on on-line
items.

4 Related work

Despite the recent evolution of Software Configuration Management systems,
most CM systems are still founded on a centralized architecture where both the
application and the repository are stored in the same physical location.
Figure 4(a) shows the traditional Client-Server architecture that is used in most
conventional CM systems (CVS [13] is probably the best known). Nowadays,
software production is becoming a more and more distributed activity where the
project teams are physically dispersed over a great number of locations. This has
fostered the design of systems that provide the distribution of the repository over
multiple sites. The solution usually adopted in the distributed CM systems is
shown in Figure 4(b): the repository is broken up among geographically distinct
servers, allowing the distribution of the data next to the actors of the software
process. However, from the user point of view not much is changed because, like



(a) (b) (c)

Fig. 4. CM system architectures

in the previous architecture, they must connect to a server to perform either
a check-in or a check-out operation. As examples of systems built over this
architecture we consider two different products : ClearCase Multisite and DVS.

Rational ClearCase Multisite [14] is a commercial product that supports
parallel software development with automated replication of project database.
With Multisite, each location has a copy (replica) of the repository and, at any
time, a site can propagate the changes made in its particular replica to other sites.
Nevertheless, each object is assigned a master replica and in general an object
can be modified only at its master replica. To avoid this restriction Multisite
uses branches. Each branch can have a different master and since the branches
of an element are independent, changes made in different sites do not conflict.
The concept of master is like our concept of authority; however, the access policy
provided by Multisite is too restrictive for our scenario.

DVS [7] is a simple research system that allows one to distribute the CM
repository over the network, but it does not allow the replication of the informa-
tion. Even though the absence of replication contrasts with our assumptions, it is
interesting to make an architectural comparison with DVS because it also makes
a clear distinction between the CM application and the underlying middleware.
In fact, DVS has been implemented on top of NUCM [8] (Network-Unified Con-
figuration Management), whereas our system is built on top of PeerWare. NUCM
defines a generic distributed repository and provides a policy-neutral interface
to realize CM systems. PeerWare is a general-purpose peer-to-peer middleware,
whereas NUCM is focused on the CM system creation and provides ad hoc
functionalities.

To make the comparison clear, our solution is sketched in Figure 4(c). It
is a pure peer-to-peer architecture where there are no servers and the whole
repository is directly distributed over the users’ devices. We claim that such an



architecture is a more suitable solution for evolvable scenarios where topology is
highly dynamic.

5 Conclusions and future work

In this paper we have discussed how to build a tool supporting cooperation to
a networked team, without relying on the existence of centralized repository
servers. We do not want to restrict the use of the system to the scenarios where
repository servers are always available on line. Instead, we propose the use of
a suitable peer-to-peer middleware which provides the abstraction of a global
virtual data structure. This is a data structure parceled among all peers, but it
can be searched and modified transparently, without knowing the actual network
topology.

The use of this abstraction enabled us to design a configuration management
tool which is especially oriented to supporting scenarios in which users’ connec-
tivity to the network can change dynamically. This is achieved by exploiting the
global virtual data structure as the artifact repository. Our solution overcomes
the intrinsic problems of client-server architectures, which are clearly not suit-
able for scenarios where the absence of a host is not an exceptional case, but
rather the normal case. Along the same line, repositories based on distributed
file systems expose the system to failures when a server is unavailable.

Our solution is based on caching copies, and then making them available for
use even if the hosts that own them are disconnected. The outcome is a genuine
peer-to-peer architecture, where any on-line machine can in principle replicate
the unavailable resources. We pay, of course, for this advantage in terms of a
harder coordination effort.

The approach we described in this paper is currently being implemented as
part of our current efforts in the provision of a suite of software process support
tools well suited for educational environments in which students are equipped
with mobile devices.
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