Deep Learning
Limitations and New Frontiers



Final Class Project

Option 1:

Choose one of the topic dealt with in the course,
study deeply the state of the art, compare solutions in the
literature, possibly executing comparative tests

Option 2:

Present a novel deep learning

research idea or application ideally concerning your research
field
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So far..

Generative Models

Decision
e Signals e Prediction
* Images e Detection

e Sensors : . ' — Y_ e Action

Data
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Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to
an arbitrary precision, any continuous function.
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Hornik et al. Neural Networks. (1989)
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Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to
an arbitrary precision, any continuous function.

The number of The resulting
hidden units may model may not
be infeasibly large generalize

Hornik et al. Neural Networks. (1989)
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Artificial Intelligence "Hype”: Historical Perspective
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Limitations




Rethinking Generalization

"Understanding Deep Neural Networks Requires Rethinking Generalization

11

Zhang et al. ICLR. (2017)
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Capacity of Deep Neural Networks

100% =

accuracy

0% —
original
labels

randomization

. Training Set

. Testing Set

Modern deep networks can
perfectly fit to random data
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completely
random

Zhang et al. ICLR. (2017)
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Neural Networks as Function Approximators

Neural networks are excellent function approximators

B mm Massachusetts . .
I l I I I Institute of 6.S191 Introduction to Deep Learning
Tech g introtodeeplearning.com

1/30/19



Neural Networks as Function Approximators

Neural networks are excellent function approximators
...when they have training data

How do we know when our
network doesn’t know?
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Adversarial Attacks on Neural Networks

Original image Perturbations Adversarial example
Temple (97%) Ostrich (98%)

Despois. “Adversarial examples and their implications” (2017).
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Adversarial Attacks on Neural Networks

Remember:

VWe train our networks with gradient descent

I
a/(6,x,y)

0 « 0 — n Fix your image x,

a0 and true label y

“How does a small change in weights decrease our loss”
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Adversarial Attacks on Neural Networks

Adversarial Image:

Modify image to increase error

/(6,x,y) | |
X< XxXx+n Fix your weights 6,
0x and true label y

“How does a small change in the input increase our loss”
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Synthesizing Robust Adversarial Examples

h}:,\‘u n'l\‘&

M classified as turtle | classified as rifle
B classified as other

Athalye et al. ICML. (2018)
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Neural Network Limitations...

Very data hungry (eg. often millions of examples)

Computationally intensive to train and deploy (tractably requires GPUs)

Easily fooled by adversarial examples

Can be subject to algorithmic bias

Poor at representing uncertainty (how do you know what the model knows?)
* Uninterpretable black boxes, difficult to trust
* Finicky to optimize: non-convex, choice of architecture, learning parameters

* Often require expert knowledge to design, fine tune architectures
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Neural Network Limitations...
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New Frontiers 1:

Bayesian Deep Learning




Why Care About Uncertainty?

— [P(cat)

— P(dog)

I on T— 6.5191 Introduction to Deep Learning 1/30/19
I I Institute of . .
Technology

introtodeeplearning.com



Why Care About Uncertainty!?

—» P(cat)= 0.2

—» P(dog) = 0.8

Remember: P(cat) + P(dog) = 1
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Bayesian Deep Learning for Uncertainty

Network tries to learn output, ¥, directly from raw data, X

Find mapping, f, parameterized by weights 8 such that
min L(Y, f(X; 9))

Bayesian neural networks aim to learn a posterior over weights,
P(O|X,Y):

P(Y|X, 0)P(0)
P(Y|X)

Intractable! P(O|X,Y) =
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Elementwise Dropout for Uncertainty

Evaluate T stochastic forward passes through the network {8},

Dropout as a form of stochastic sampling  z,, ; ~ Bernoulli(p) Yw € 0

Unregularized Kernel Bernoulli Dropout Stochastic Sampled
7] ZO,t Ot

.

T
o 1
E(Y|X) = TZ f(X16,)
t=1

|

T
Var(P|x) == ) (X)? ~ E(7|x)”
t=1

0 1 =1

Gal and Ghahramani, ICML, 201 6.
Amini, Soleimany, et al., NIPS Workshop on Bayesian Deep Learning, 2017.

I I I N Massachusetts
1/30/19

I I Institute of 65191 I'ntroductlon to Deep Learning
Technology introtodeepleaming.com




Model Uncertainty Application
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Input image Predicted Depth Model Uncertainty

Kendall, Gal, NIPS, 2017.
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New Frontiers ll:

Learning to Learn




Motivation: Learning to Learn

Standard deep neural networks are optimized for a single task
Il

Complexity of models increases Greater need for specialized engineers

Often require expert knowledge to build an architecture for a given task

Build a learning algorithm that learns which model to use to solve a given problem

AutoML
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AutoML: Learning to Learn

Sample architecture A
with probability p

The controller (RNN)

v

Trains a child network
with architecture
A to get accuracy R

Compute gradient of p and
scale it by R to update
the controller

Zoph and Le, ICLR 2017.
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AutoML.: Model Controller

At each step, the model samples a brand new network
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Traming Data q

AutoML.:The Child Network

-

(&

Sampled network
from RNN

>

)

q Prediction

Compute final accuracy on this dataset.
Update RNN controller based on the accuracy of the child network after training.

Zoph and Le, ICLR 2017.
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AutoML on the Cloud

o @ £

AutoML VisionBETA AutoML Natural AutoML TranslationBETA
Start with as little as a few dozen LanguageBETA Upload translated language pairs to train
photographic samples, and Cloud Automatically predict text categories your own custom model.

AutoML will do the rest. through either single or multi-label

classification.

Google Cloud.
B Em Massachusetts H :
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