Deep Learning Limitations and New Frontiers

Final Class Project

Option 1:

Choose one of the topic dealt with in the course, study deeply the state of the art, compare solutions in the literature, possibly executing comparative tests

Option 2:

Present a novel deep learning research idea or application ideally concerning your research field

So far..

- Prediction
- Detection

Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.

6.S191 Introduction to Deep Learning introtodeeplearning.com Hornik et al. Neural Networks. (1989)

Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.

Artificial Intelligence "Hype": Historical Perspective

Limitations

Rethinking Generalization

"Understanding Deep Neural Networks Requires Rethinking Generalization

Capacity of Deep Neural Networks

Neural Networks as Function Approximators

Neural networks are excellent function approximators

Neural Networks as Function Approximators

Neural networks are **excellent** function approximators ...when they have training data

Adversarial Attacks on Neural Networks

Adversarial Attacks on Neural Networks

Remember:

We train our networks with gradient descent

$$\theta \leftarrow \theta - \eta \frac{\partial J(\theta, x, y)}{\partial \theta}$$

Fix your image x, and true label y

"How does a small change in weights decrease our loss"

Adversarial Attacks on Neural Networks

Adversarial Image:

Modify image to increase error

$$x \leftarrow x + \eta \frac{\partial J(\theta, x, y)}{\partial x}$$

Fix your weights θ , and true label y

"How does a small change in the input increase our loss"

Synthesizing Robust Adversarial Examples

6.S191 Introduction to Deep Learning introtodeeplearning.com Athalye et al. ICML. (2018)

1/30/19

Neural Network Limitations...

- Very data hungry (eg. often millions of examples)
- **Computationally intensive** to train and deploy (tractably requires GPUs)
- Easily fooled by **adversarial examples**
- Can be subject to **algorithmic bias**
- Poor at **representing uncertainty** (how do you know what the model knows?)
- Uninterpretable **black boxes**, difficult to trust
- Finicky to optimize: non-convex, choice of architecture, learning parameters
- Often require **expert knowledge** to design, fine tune architectures

Neural Network Limitations...

- Very data hungry (eg. often millions of examples)
- Computationally intensive to train and deploy (tractably requires GPUs)
- Easily fooled by **adversarial examples**
- Can be subject to algorithmic bias
- Poor at **representing uncertainty** (how do you know what the model knows?)
- Uninterpretable **black boxes**, difficult to trust
- Finicky to optimize: non-convex, choice of architecture, learning parameters
- Often require **expert knowledge** to design, fine tune architectures

New Frontiers 1: Bayesian Deep Learning

Why Care About Uncertainty?

Why Care About Uncertainty?

Remember: $\mathbb{P}(cat) + \mathbb{P}(dog) = 1$

1411	Massachusetts Institute of Technology	6.S191 Introduction to Deep Learning introtodeepleaming.com	1/30/19

Bayesian Deep Learning for Uncertainty

Network tries to learn output, \boldsymbol{Y} , directly from raw data, \boldsymbol{X}

Find mapping, f, parameterized by weights θ such that $\min \mathcal{L}(Y, f(X; \theta))$

Bayesian neural networks aim to learn a posterior over weights, $\mathbb{P}(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{Y})$:

Intractable! $\mathbb{P}(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{Y}) = \frac{\mathbb{P}(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\boldsymbol{Y}|\boldsymbol{X})}$

Elementwise Dropout for Uncertainty

Evaluate T stochastic forward passes through the network $\{\boldsymbol{\theta}_t\}_{t=1}^T$

Dropout as a form of stochastic sampling $z_{w,t} \sim Bernoulli(p) \quad \forall w \in \theta$

Model Uncertainty Application

Input image

Predicted Depth

Model Uncertainty

6.S191 Introduction to Deep Learning introtodeeplearning.com Kendall, Gal, NIPS, 2017.

New Frontiers II: Learning to Learn

Motivation: Learning to Learn

Standard deep neural networks are optimized for a single task

Complexity of models increases

Greater need for specialized engineers

Often require expert knowledge to build an architecture for a given task

Build a learning algorithm that learns which model to use to solve a given problem

AutoML

AutoML: Learning to Learn

6.S191 Introduction to Deep Learning introtodeeplearning.com Zoph and Le, ICLR 2017.

1/30/19

AutoML: Model Controller

At each step, the model samples a brand new network

AutoML:The Child Network

Compute final accuracy on this dataset.

Update RNN controller based on the accuracy of the child network after training.

Zoph and Le, ICLR 2017.

1/30/19

AutoML on the Cloud

Massachusetts Institute of Technology

6.S191 Introduction to Deep Learning introtodeeplearning.com Google Cloud.