Deep Reinforcement Learning

Deep Reinforcement Learning

Reinforcement Learning:

A set of mathematical tools and methods for teaching agents how to go from perceiving the world to acting optimally in it

https://www.youtube.com/watch?v=8tq1C8spV g

Classes of Learning Problems

Unsupervised Learning

Supervised Learning

-

Reinforcement Learning

Data: (x, y)

x is data, y is label

Data: x

x is data, no labels!

Data: state-action pairs

Goal: Learn function to map

 $x \rightarrow y$

Goal: Learn underlying

structure

Goal: Maximize future rewards

over many time steps

Apple example:

This thing is an apple.

Apple example:

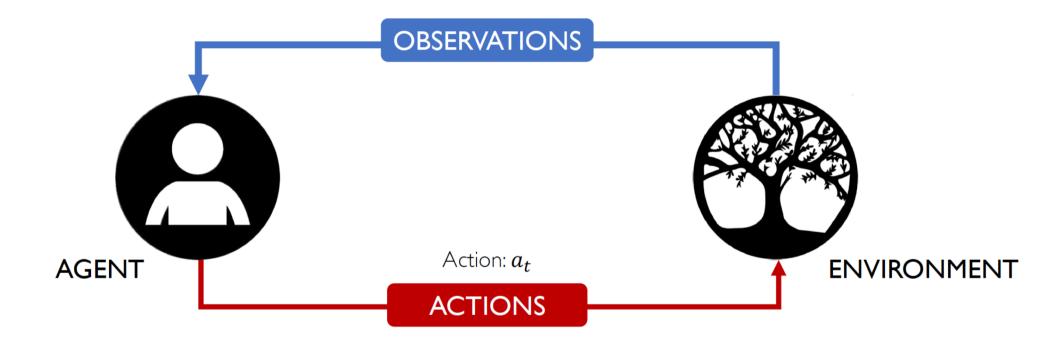
This thing is like the other thing. Apple example:

Eat this thing because it will keep you alive.

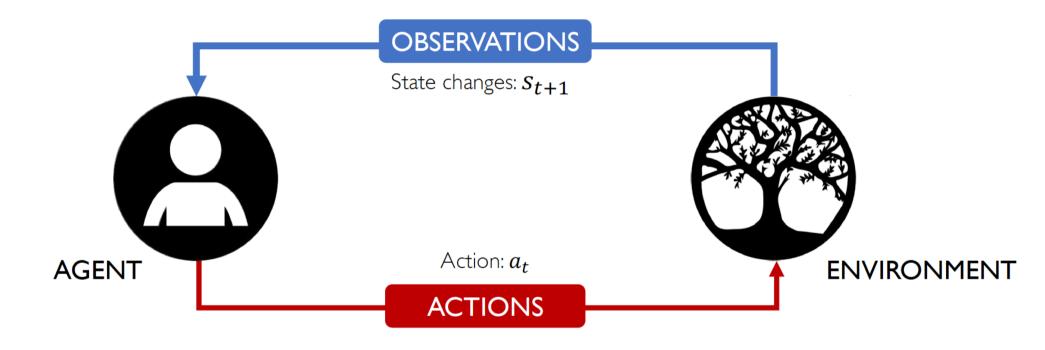
Agent: takes actions.

Environment: the world in which the agent exists and operates.

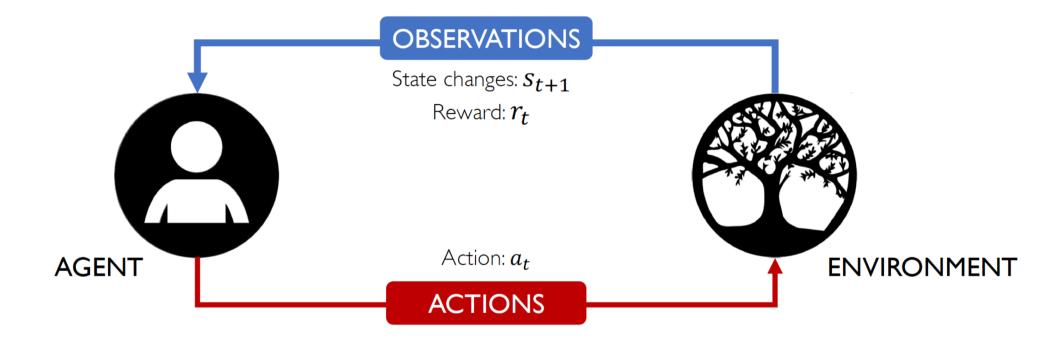
Action: a move the agent can make in the environment.



Observations: of the environment after taking actions.



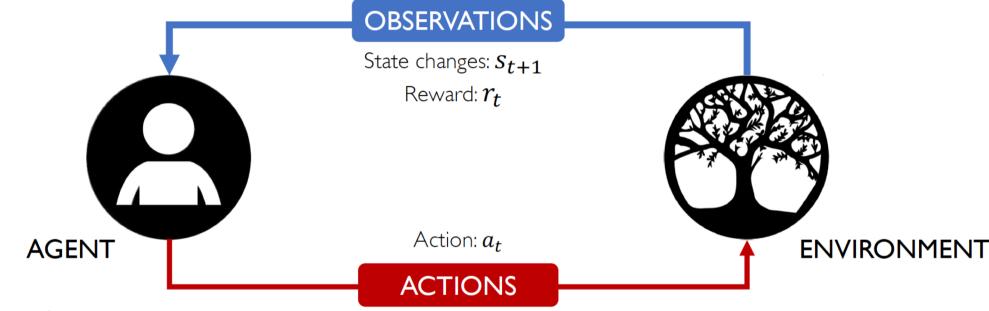
State: a situation which the agent perceives.

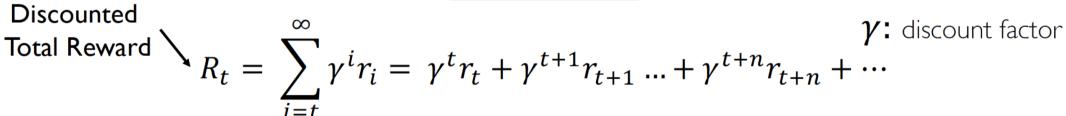


Reward: feedback that measures the success or failure of the agent's action.

Total Reward

$$rac{1}{2}R_t = \sum_{i=t}^{\infty} r_i = r_t + r_{t+1} \dots + r_{t+n} + \dots$$





Defining the Q-function

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Total reward, R_t , is the discounted sum of all rewards obtained from time t

$$Q(s, a) = \mathbb{E}[R_t]$$

The Q-function captures the **expected total future reward** an agent in state, s, can receive by executing a certain action, a

How to take actions given a Q-function?

$$Q(s, a) = \mathbb{E}[R_t]$$
 \uparrow
(state, action)

Ultimately, the agent needs a **policy** $\pi(s)$, to infer the **best action to take** at its state, s

Strategy: the policy should choose an action that maximizes future reward

$$\pi^*(s) = \operatorname*{argmax} Q(s, a)$$

Deep Reinforcement Learning Algorithms

Value Learning

Find Q(s,a)

$$a = \underset{a}{\operatorname{argmax}} Q(s, a)$$

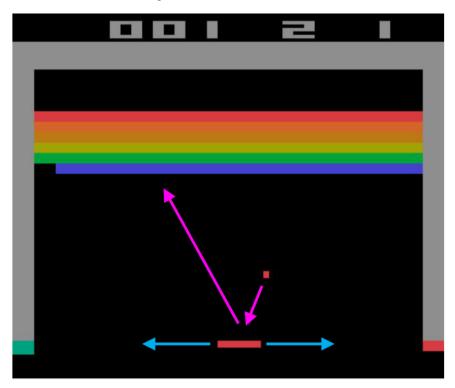
Policy Learning

Find $\pi(s)$

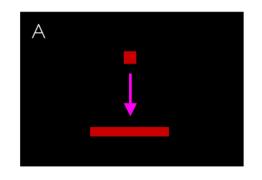
Sample $a \sim \pi(s)$

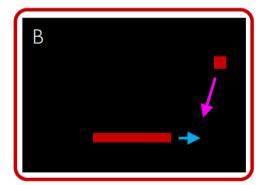
Digging deeper into the Q-function

Example: Atari Breakout



It can be very difficult for humans to accurately estimate Q-values



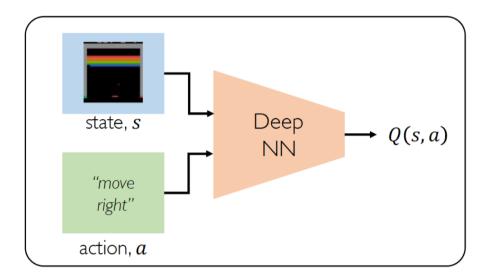


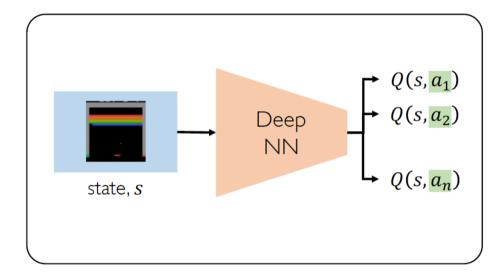
Which (s, a) pair has a higher Q-value?

https://www.youtube.com/watch?v=TmPfTpjtdgg

Deep Q Networks (DQN)

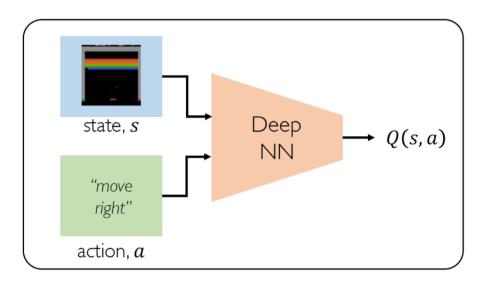
How can we use deep neural networks to model Q-functions?

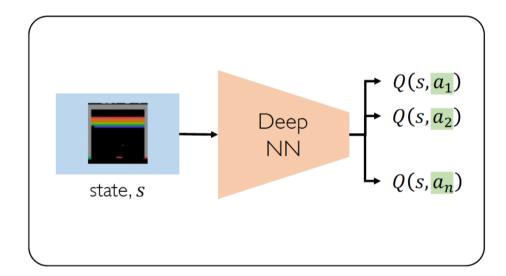




Deep Q Networks (DQN):Training

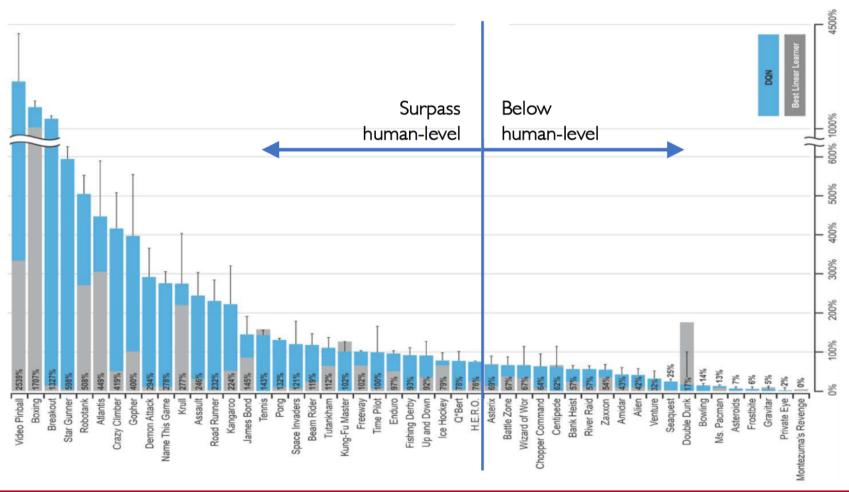
How can we use deep neural networks to model Q-functions?





$$\mathcal{L} = \mathbb{E}\left[\left\| \left(r + \gamma \max_{a'} Q(s', a')\right) - Q(s, a) \right\|^{2} \right]$$

DQN Results



Downsides of Q-learning

Complexity:

- Can model scenarios where the action space is discrete and small
- Cannot handle continuous action spaces

IMPORTANT:

Imagine you want to predict steering wheel angle of a car!

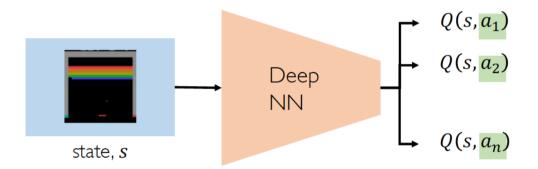
Flexibility:

 Cannot learn stochastic policies since policy is deterministically computed from the Q function

To overcome, consider a new class of RL training algorithms: Policy gradient methods

Policy Gradient (PG): Key Idea

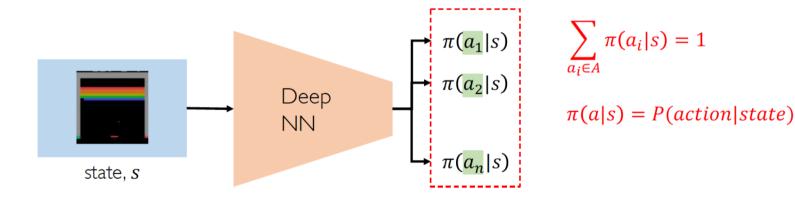
DQN (before): Approximating Q and inferring the optimal policy,



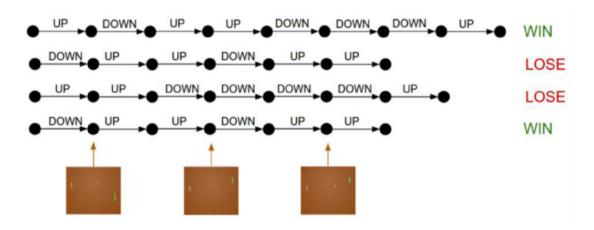
Policy Gradient (PG): Key Idea

DQN (before): Approximating Q and inferring the optimal policy,

Policy Gradient: Directly optimize the policy!



Policy Gradient (PG): Training



- I. Run a policy for a while
- 2. Increase probability of actions that lead to high rewards
- 3. Decrease probability of actions that lead to low/no rewards

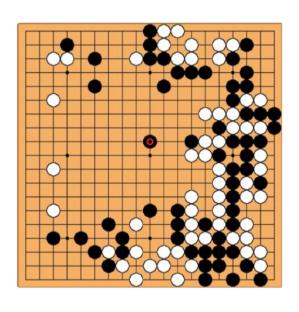
```
function REINFORCE Initialize \theta for episode \sim \pi_{\theta} \{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode for t = 1 to t-1 \nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) R_t \theta \leftarrow \theta + \alpha \nabla return \theta
```

log-likelihood of action

$$\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \frac{R_t}{R_t}$$

The Game of Go

Aim: Get more board territory than your opponent.

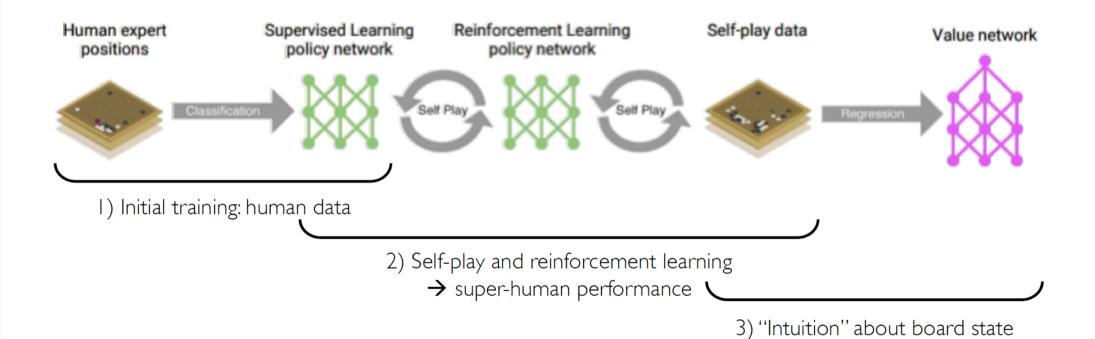


Board Size n x n	Positions 3 ^{n²}	% Legal	Legal Positions
×	3	33.33%	
2×2	81	70.37%	57
3×3	19,683	64.40%	12,675
4×4	43,046,721	56.49%	24,318,165
5×5	847,288,609,443	48.90%	414,295,148,741
9×9	4.434264882×10 ³⁸	23.44%	1.03919148791×10 ³⁸
13×13	4.300233593×10 ⁸⁰	8.66%	3.72497923077×10 ⁷⁹
19×19	1.740896506×10 ¹⁷²	1.20%	2.08168199382×10 ¹⁷⁰

Greater number of legal board positions than atoms in the universe.

Source: Wikipedia.

AlphaGo Beats Top Human Player at Go (2016)



Silver et al., Nature 2016.

AlphaGo Beats Top Human Player at Go (2016)

Silver et al., Nature 2016.

https://www.youtube.com/watch?v=8tq1C8spV_g