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Abstra
t. We give an algorithm solving 
ombined word problems (over non ne
-

essarily disjoint signatures) based on rewriting of equivalen
e 
lasses of terms. The


anoni
al rewriting system we introdu
e 
onsists of few transparent rules and is ob-

tained by applying Knuth-Bendix 
ompletion pro
edure to presentations of pushouts

among 
ategories with produ
ts. It applies to pairs of theories whi
h are both 
on-

stru
tible over their 
ommon redu
t (on whi
h we do not make any spe
ial assump-

tion).

�

Lavoro svolto nell'ambito del progetto MURST \Logi
a".
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1 Introdu
tion

An essential problem in automated dedu
tion 
onsists in integrating theorem provers

whi
h are able to perform separated tasks. In the �eld of equational logi
, this leads

in parti
ular to the following question: suppose you are able to solve word problems

for theories T

1

; T

2

; 
an you solve word problem for T

1

[ T

2

? Better, 
an you design

an algorithm taking as input two arbitrary algorithms for word problems for T

1

and

T

2

and realizing a de
ision pro
edure for word problem for T

1

[ T

2

?

In 
ase T

1

; T

2

have disjoint signatures the positive answer was known from long

time [12℄, although only more re
ently dis
overed within automated dedu
tion 
om-

munity (see e.g. [11℄). In the general 
ase, 
ombining de
idable word problems may

leads to unde
idability, even if we suppose that T

1

; T

2

are both 
onservative over their


ommon redu
t T

0

. To this aim, 
onsider the following example. Let T

0

be the theory

of join-semilatti
es with zero (i.e. of 
ommutative idempotent monoids) and let T

1

be the theory of Boolean algebras. As T

2

we take the theory of semilatti
e-monoids,

whi
h are algebras having both a monoid and a join-semilatti
e with zero stru
ture

and whi
h satisfy the further equation:

(

n

_

i=1

x

i

) Æ (

m

_

j=1

y

j

) =

n

_

i=1

m

_

j=1

(x

i

Æ y

j

):

T

2


learly has de
idable word problem (free algebras are �nite sets of lists of the

generators), as well as T

1

. The union theory (whi
h we better indi
ate with T

1

+

T

0

T

2

)


orresponds to the `distributive linear logi
' of [8℄ and falls within the unde
idability

results of [1℄.

Clearly something must be assumed in order to have positive solution to 
ombined

word problems; in the literature it is usually assumed that T

1

; T

2

share a set of


onstru
tors (we prefer the terminology `they are both 
onstru
tible over T

0

'). There

are various de�nitions of 
onstru
tors and depending on su
h de�nitions there are

variable strength results. Main papers on the subje
t are [5℄ and [3, 4℄: the se
ond has

a weaker de�nition and 
onsequently a stronger result. Our de�nition is again weaker

(see Se
tion 10 for details) and, more important, it 
overs natural mathemati
al

examples and does not make any strong assumption on T

0

(in [5℄ T

0

is assumed to be

free, in [3, 4℄ to be 
ollapse-free).

1

[5℄ and [3, 4℄ use quite di�erent methods: in [3, 4℄ the 
ombined de
ision algo-

rithm is obtained through a refutation te
hnique manipulating equations a

ording to


ertain non-deterministi
 rules. As su
h it has the advantage of being more 
exible,

although it does not provide normal forms. On the 
ontrary, [5℄ (and the similar

method of [11℄ for the disjoint 
ase) dire
tly manipulate terms by abstra
ting and


ollapsing alien subterms and the suggested algorithm follows a 
omplex and rigidly

1

Re
all that an equational theory is said to be 
ollapse-free i� it 
annot prove equations of the

kind x = t, where x is a variable and t is a non-variable term.
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preassigned pro
edure. Our method is more similar to that of [5℄ (in the sense that it

manipulates terms), but has the same 
exibility advantages as the method of [3, 4℄.

The idea is simple: we build a 
anoni
al rewriting system whi
h is able to normalize

paths of mixed pure terms.

The realization of su
h a plan looks very hard at a �rst glan
e: terms from 
om-

bined signatures are quite unreliable datatypes, basi
ally be
ause they 
an 
ompose,

de
ompose and even 
ollapse in many un
ontrolled and overlapping ways. However,

we shall put su
h 
omplex 
ombinatori
s under the 
ontrol framework provided by

the 
ategori
al approa
h to equational logi
: su
h approa
h goes ba
k to the 
lassi
al

pioneering paper of F.W. Lawvere [9℄ in fun
torial semanti
s.

2

Basi
ally, equational

theories are identi�ed with 
ategories with produ
ts, so that in our situation we need

to manipulate presentations of pushouts among su
h 
ategories. We get a �rst gen-

eral and simple presentation of these pushouts in Se
tion 3 by means of two-sides

rewrite rules. To this presentation we apply, in Se
tion 5, Knuth-Bendix 
ompletion

pro
edure and get the desired rewriting system, under some `
onstru
tors' hypothesis

for our theories.

This 
onstru
tors hypothesis is formulated within a 
ategori
al framework in Se
-

tion 5 by means of (weak) fa
torization systems and translated in symboli
 terms

in Se
tion 10: roughly speaking, T

i

is said to be 
onstru
tible over T

0

i� there is a


lass E

i

of terms (in
luding variables and 
losed under renamings) in the signature




i

of T

i

so that any 


i

-term t(x

1

; : : : ; x

n

) de
omposes uniquely (up to provable iden-

tity) as u(v

1

; : : : ; v

k

) where the v

i

(x

1

; : : : ; x

n

) are (always up to provable identity)

distin
t terms from E

i

and u is a k-minimized term in the signature 


0

of T

0

(a term

u(x

1

; : : : ; x

k

) is said to be k-minimized i� it is not provably identi
al to any term in

whi
h only variables 
oming from a proper subset of fx

1

; : : : ; x

k

g o

ur). Examples

are provided in Se
tion 10 (a typi
al example is the 
ase of 
ommutative rings with

unit whi
h are 
onstru
tible over abelian groups).

We brie
y des
ribe here the rewriting system R we obtain. R 
onsists of only

four rules (for te
hni
al reasons 
on
erning `
olours' of terms, two of su
h rules are

`dupli
ated'). First rule (
alled 
omposition rule) simply allows to 
ompose equally


oloured 
onse
utive (equivalen
e 
lasses of) terms. Se
ond rule (
alled "-extra
tion

rule) minimizes terms by `moving left' proje
tions (i.e. n-tuples of distin
t variables).

Third rule (
alled �-extra
tion rule) `moves right' the se
ond 
omponent of the above

mentioned fa
torization of terms. The fourth rule (
alled produ
ts rule) is suggested

by the 
ompletion pro
edure and has the following meaning: any proje
tion (i.e. any

tuple of distin
t variable terms) appearing in an internal position of a path of pure

terms represents a `hole' and the normalization pro
ess is supposed to �ll su
h a hole

by `moving right' genuine terms (i.e. terms whi
h are not proje
tions). The 
omplete

table of rules of R is given at the end of Se
tion 5.

2

We re
all that there is another quite interesting 
ategory-theoreti
 approa
h to universal algebra,

namely the monads approa
h (whi
h has also been signi�
antly used in questions related to rewriting,

see e.g. [10℄).

3



Although R is a quite simply des
ribed system, the 
on
uen
e proof requires long

work, be
ause all 
riti
al pairs must be examined. This leads to a large amount of

details, all 
onsisting of elementary 
omputations (in fa
t, on
e the te
hni
al tools

are appropriately settled, single 
ases are treated in the most natural way).

The paper is organized as follows: in Se
tion 2 we re
all the ne
essary ba
kground

from fun
torial semanti
s; in Se
tion 3 we get a �rst presentation of pushouts among

Lawvere 
ategories. In Se
tions 4-5 we apply 
ompletion pro
edure and get the appro-

priate rewriting system R. In Se
tion 6 we provide lo
al 
on
uen
e and termination

for a simple subsystem R

0

of R. In Se
tion 7 a third rewriting system, 
alled R

+

is

introdu
ed (R

+

is equivalent to R, it normalizes slower but it is easier to manage); in

addition useful te
hni
al fa
ts are 
olle
ted. In Se
tion 8, R

+

is proved to be lo
ally


on
uent, whereas in Se
tion 9 termination of both R and R

+

is established. Finally,

equivalen
e between R and R

+

and 
anoni
ity of the former are obtained. Se
tion 10

provides examples of 
onstru
tible theories and of normalizations of paths of terms;

a 
omparison with results of [3, 4℄ is done at the end of the paper.

Se
tions 6-7-8-9 
an be skipped in a �rst reading by people mostly interested in

our results (and less interested in their proofs).

This te
hni
al report is fully detailed and self-
ontained. We only assume a 
ertain

familiarity with rewriting (for some unexplained notions readers may 
onsult [2℄).

2 A short summary in fun
torial semanti
s

We re
all that a 
ategory with �nite produ
ts C is a 
ategory in whi
h for every �nite

list of obje
ts X

1

; : : : ;X

n

(n � 0) there is an obje
t X

1

� � � � � X

n

and there are

arrows

�

X

1

;:::;X

n

X

i

: X

1

� � � � �X

n

�! X

i

(to be denoted simply as �

X

i

or �

i

) enjoying the following universal property:

� for every obje
t Z, for every n-tuple of arrows �

i

: Z �! X

i

(i = 1; : : : ; n)

there is a unique arrow � : Z �! X

1

� � � � �X

n

su
h that � Æ �

i

= �

i

for all

i = 1; : : : ; n

3

(su
h � is usually indi
ated by h�

1

; : : : ; �

n

i).

The de�nition in
ludes the 
ase n = 0 and n = 2: in fa
t, su
h two 
ases are suÆ
ient

for the general 
ase n � 0. We 
an so equivalently give the de�nition in the following

way: a 
ategory C is said to have �nite produ
ts i�

� there is a terminal obje
t, namely an obje
t 1 su
h that for every obje
t X

there is just one arrow X �! 1 (su
h arrow is noted h i or h i

X

);

3

Composition of arrows

�

�!

�

�! in a 
ategory is denoted as � Æ � in this paper (
ontrary to some

more frequent notations like � Æ�). We think that dire
tly following `arrow pi
tures' looks better for

the purposes of this paper.
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� for every pair of obje
ts X

1

;X

2

there are an obje
t X

1

� X

2

and arrows �

1

:

X

1

� X

2

�! X

1

, �

2

: X

1

� X

2

�! X

2

, su
h that for every obje
t Z and for

every pair of arrows �

1

: Z �! X

1

, �

2

: Z �! X

2

, there is a unique arrow

h�

1

; �

2

i : Z �! X

1

�X

2

su
h that h�

1

; �

2

i Æ �

1

= �

1

and h�

1

; �

2

i Æ �

2

= �

2

.

In 
ategories with �nite produ
ts, we also use the standard abbreviation �

1

�� � ���

n

to denote (for X

1

�

1

�! Y

1

, : : : ; X

n

�

n

�! Y

n

) the arrow h�

1

Æ �

1

; : : : ; �

n

Æ �

n

i.

In the paper by `
ategory' we always mean `
ategory with �nite produ
ts' and

by `fun
tor' we always mean `�nite produ
ts preserving fun
tor'. Che
king 
omplex

identities in 
ategories with produ
ts might be a little painful if the above de�nition

is used, however for general reasons it is suÆ
ient to 
he
k su
h identities in the


ategory Set of sets (basi
ally, this is due to faithfulness of Yoneda embedding and

to the fa
t that produ
ts are 
omponentwise in presheaves). For instan
e, in order to


he
k the identity

h� Æ �; 
i = h�; 
i Æ (� � 1);

where X

�

�! Y

�

�! Z

1

, X




�! Z

2

,

4

one 
an always assume that the data involved

are just sets and fun
tions and observe that \for every x 2 X"

(h� Æ �; 
i)(x) = h�(�(x)); 
(x)i = (� � 1) Æ (h�(x); 
(x)i) = (h�; 
i Æ (� � 1))(x):

We shall meet many su
h identities in the paper, but we shall never justify them

expli
itly, we simply assume the reader realizes by himself that they are `true in Set'.

An (equational) theory T = h
; Axi is just an ordinary signature 
 endowed

with a set of pairs of terms (`the axioms' of T ). We use letters t; u; v; : : : for terms

and letters x

1

; x

2

; : : : for variables; t(x

1

; : : : ; x

n

) means that the term t 
ontains

at most the variables x

1

; : : : ; x

n

. Notation t(u

1

=x

1

; : : : ; t

n

=x

n

) (or simply t(u

i

=x

i

)

or again t(u

1

; : : : ; u

n

)) is used for substitutions; when we write t(u=x

i

) we mean

t(x

1

=x

1

; : : : ; u=x

i

; : : : ; x

n

=x

n

). Notations like `

T

t

1

= t

2

refer to some sound and


omplete dedu
tion system (e.g. equational logi
). De
iding `

T

t

1

= t

2

is just the

(uniform) word problem for T . In order to avoid irrelevant 
ases, we shall always

assume that our theories T mat
h the following two requirements:

� 
 always 
ontains a 
onstant symbol 


0

(this is harmless, be
ause adding a free


onstant -if needed- does not 
hange the nature of word problems);

� T is non-degenerate, namely 6`

T

x

1

= x

2

.

Given a signature 
 and a 
ategory C, an 
-interpretation I in C 
onsists of the

following data:

- an obje
t A in C (
alled the support of I);

4

Identities are generi
ally noted 1; in some 
ases, we may use a subs
ript for their domain if we

want to evidentiate it (in the present 
ase, we should have written 1

Z

2

).

5



- for every f 2 


n

(


n

is the set of fun
tion symbols having arity n), an arrow

I(f) : A

n

�! A (noti
e that for n = 0, we have I(f) : 1 �! A).

Given su
h an interpretation I and a term t, we 
an de�ne I

n

(t) : A

n

�! A (to be

denoted simply as I(t) if 
onfusion does not arise), for every n su
h that x

1

; : : : ; x

n

is a list 
ontaining all the variables o

urring in t, as follows:

- I(x

i

) = �

i

;

- I(f(t

1

; : : : ; t

m

)) = hI(t

1

); : : : ;I(t

m

)i Æ I(f).

An 
-interpretation I is a model of T = h
; Axi (or is an internal T -algebra in C)

i� for every (t

1

; t

2

) 2 Ax, we have I(t

1

) = I(t

2

).

5

Not only 
ategories give models of theories, they 
an be used as theories. This

is a basi
 point in 
ategori
al logi
, whi
h leads in our 
ase to the notion of Lawvere


ategory. Basi
ally this is nothing but any one-sorted (�nite produ
ts) 
ategory.

Formally, a Lawvere 
ategory is a 
ategory having obje
ts fX

n

g

n�0

, in whi
h X

n

(endowed with spe
i�ed proje
tions �

i

: X

n

�! X) is the produ
t with itself n-

times.

6

In our 
ontext (see below) �

i

will be the (equivalen
e 
lass of) the variable

x

i

. We �x the following 
onvention about a Lawvere 
ategory: arrows X

n

�! X

m

of the kind h�

i

1

; : : : ; �

i

m

i (where i

1

; : : : ; i

m

� n) are 
alled

� (pure) proje
tions i� the i

1

; : : : ; i

m

are all distin
t (in this 
ase we must have

m � n);

� diagonals i� fi

1

; : : : ; i

m

g in
lude f1; : : : ; ng (in this 
ase we must have m � n);

� renamings i� i

1

; : : : ; i

m

are just a permutation of f1; : : : ; ng (in this 
ase we

must have n = m).

In order to have a 
learer pi
ture, 
onsider the 
ategory Sf having as obje
ts the �nite

sets of the kind n = f1; : : : ; ng and as arrows all fun
tions (this is the skeleton 
ategory

of �nite sets); for every Lawvere 
ategory T, we have a fun
tor S : Sf

op

�! T

asso
iating X

n

with n and h�

h(1)

; : : : ; �

h(m)

i with every fun
tion h : n �m. Now

an arrow in T is a (pure) proje
tion i� it is the S-image of an inje
tive fun
tion, it

is a diagonal i� it is the S-image of a surje
tive fun
tion and it is a renaming i� it is

the S-image of a bije
tion.

5

Stri
tly speaking, one should show that this does not depend on the list x

1

; : : : ; x

n

(whi
h in
ludes

all variables o

urring in t

1

; t

2

) 
hosen in order to apply I. Indeed it is so: in fa
t, a simple indu
tive

argument shows that I

n+1

(t

i

) di�ers from I

n

(t

i

) by left 
omposition with the n-tuple of proje
tions

h�

1

; : : : ; �

n

i. Now noti
e that any arrow of the kind A

n

h�

1

;:::;�

n

;�i

�! A

n+1

gives the identity on
e


omposed on the right with su
h an n-tuple of proje
tions (one 
an take as � anything, e.g. A

n

I

n

(t

1

)

�!

A). Thus I

n+1

(t

1

) = I

n+1

(t

2

) holds i� I

n

(t

1

) = I

n

(t

2

) holds (just take left 
omposition with the

above mentioned arrows).

6

Of 
ourse, this implies that X

0

is equal to the terminal obje
t 1 and that X

n

1

+n

2

is the produ
t

of X

n

1

and X

n

2

with obvious tuples of �

i

's as proje
tions.

6



Lawvere 
ategories are essentially in one-to-one 
orresponden
e with equational

theories (we said `essentially' be
ause two equational theories di�ering only for the


hoi
e of the language and of the axioms are 
ollapsed into the same `invariant'

Lawvere 
ategory). We need in this paper only one side of this 
orresponden
e, whi
h

we are going to explain. Let T = (
; Ax) be a theory; we build a Lawvere 
ategory

T in the following way. We take as arrows X

n

�! X

m

the m-tuples of equivalen
e


lasses of terms 
ontaining at most the variables x

1

; : : : ; x

n

(equivalen
e is intended

through provable identity in T ); equivalen
e 
lasses of variables are the spe
i�ed

proje
tions and 
omposition is substitution. Expli
itly, this means that 
omposition

of

hft

1

g; : : : ; ft

m

gi : X

n

�! X

m

and of

hfu

1

g; : : : ; fu

r

gi : X

m

�! X

r

is the r-tuple of terms in the variables x

1

; : : : ; x

n

given by:

hfu

1

(t

i

=x

i

)g; : : : ; fu

r

(t

i

=x

i

)gi : X

n

�! X

r

:

Let us now examine models; given a model I of a theory T in a 
ategory C, we


an asso
iate with it a fun
tor:

(1) F

I

: T �! C

in the following way. If A is the support of I, F

I

(X

n

) = A

n

; if hft

1

g; : : : ; ft

m

gi is an

arrow in T,

F

I

(hft

1

g; : : : ; ft

m

gi) = hI(t

1

); : : : ;I(t

m

)i:

Vi
e versa, given a fun
tor F : T �! C, we 
an asso
iate with it the model I

F

with

support F (X) given by

(2) I

F

(f) = F (ff(x

1

; : : : ; x

n

)g)

for every f 2 


n

. The two 
orresponden
es (1) and (2) are inverse ea
h other, thus

we 
an identify models with fun
tors.

Fun
tors 
an be used also to deal with synta
ti
 interpretations; we shall 
onsider

only spe
ial kinds of synta
ti
 interpretations, those whi
h matter for our purposes.

Suppose we are given two theories T

0

= (


0

; Ax

0

) and T

1

= (


1

; Ax

1

), su
h that




0

� 


1

and Ax

0

� Ax

1

. Su
h data indu
e a fun
tor

(3) I

1

: T

0

�! T

1

asso
iating equivalen
e 
lasses of terms with themselves (more pre
isely, equivalen
e


lass of t in T

0

with equivalen
e 
lass of t in T

1

). When T

1

is a 
onservative extension

of T

0

(i.e. when 


0

-terms are provably equal in T

0

i� they are provably equal in T

1

)

we write T

0

� T

1

for short. Noti
e that T

1

is a 
onservative extension of T

0

i� the

fun
tor I

1

is faithful (i.e. inje
tive on arrows). Moreover, the restri
tion of a T

1

-model

to a T

0

-model be
omes 
omposition on the left with I

1

(whenever models are seen as

fun
tors under the 
orresponden
e (1)-(2)).

7



3 Basi
 Equations

We now �x our main data for the paper: we have three theories

T

0

= (


0

; Ax

0

)

T

1

= (


1

; Ax

1

)

T

2

= (


2

; Ax

2

)

su
h that T

1

and T

2

are 
onservative extensions of T

0

and 


0

= 


1

\ 


2

; taking

(non disjoint) union of signatures and axioms we get a further theory whi
h we 
all

T

1

+

T

0

T

2

. We suppose to be able to solve the word problem for T

1

; T

2

; in general,

as explained in the introdu
tion, this is not enough for solving the word problem

for T

1

+

T

0

T

2

too,

7

however we may look for suÆ
ient 
onditions yielding a positive

solution.

The 
ategory T

1

+

T

0

T

2


an be built as usual, by using terms; however we want

to 
hara
terize it intrinsi
ally in terms of T

0

;T

1

;T

2

. For this it is suÆ
ient to look

at its models. Let C be a 
ategory and let I

1

;I

2

be models of T

1

; T

2

in C restri
ting

to the same model of T

0

; from these data it is possible to build a unique model I of

T

1

+

T

0

T

2

in C restri
ting to I

1

;I

2

: the support is the same as the 
ommon support of

I

1

;I

2

and the interpretations of fun
tions symbols 
an simply be joined (as they agree

on 


0

). Axioms Ax

1

[Ax

2

will be all true (as they involve only terms belonging to the

same T

i

). Translating everything in terms of fun
tors, we have that T

1

+

T

0

T

2

enjoys

the following universal property: for every 
ategory C, for every pair of fun
tors F

1

:

T

1

�! C and F

2

: T

2

�! C su
h that I

1

ÆF

1

= I

2

ÆF

2

, there exists a unique fun
tor

F : T

1

+

T

0

T

2

�! C su
h that J

1

Æ F = F

1

and J

2

Æ F = F

2

(here I

1

: T

0

�! T

1

,

I

2

: T

0

�! T

2

, J

1

: T

1

�! T

1

+

T

0

T

2

, J

2

: T

2

�! T

1

+

T

0

T

2

are fun
tors 
oming

from synta
ti
 expansions as in (3)). Otherwise said, T

1

+

T

0

T

2

is just the pushout of

T

1

;T

2

over T

0

.

8

This purely 
ategori
al property uniquely 
hara
terizes T

1

+

T

0

T

2

.

Next step 
onsists in a dire
t des
ription of a 
ategory (isomorphi
 to) T

1

+

T

0

T

2

,

by using the above mentioned universal property: for this des
ription we do not use

terms anymore, but a more algebrai
 notion, namely mixed paths of arrows from

T

1

;T

2

. To make the notation simpler, we a
t as fun
tors I

1

; I

2

(whi
h are faithful)

were just in
lusions. Formally, a path K : X

n

�! X

m

is a non empty list of arrows


oming from either T

1

or T

2

(or both)

K = �

1

; : : : ; �

k

su
h that

7

Noti
e that T

1

+

T

0

T

2

might not be a 
onservative extension of T

1

; T

2

: for instan
e, both Boolean

algebras and Heyting algebras are 
onservative over distributive latti
es with 0 and 1, but putting

together the two theories one gets again the theory of Boolean algebras whi
h is obviously not


onservative over Heyting algebras.

8

In relevant 
ontexts, a 2-dimensional pushout should be 
onsidered instead: it 
orresponds to the

theory of pairs of models of T

1

; T

2

, endowed with an isomorphism among their respe
tive redu
ts.

2-dimensional aspe
ts 
ould be 
onglobated with some further work in the approa
h of this paper.

8



(i) the domain of �

1

is X

n

;

(ii) the 
odomain of �

k

is X

m

;

(iii) for every i = 1; : : : ; k � 1, the 
odomain of �

i

is equal to the domain of �

i+1

.

Paths are just words (with `typing' restri
tions). Equivalen
e relations on paths

(stable with right and left 
on
atenation) 
an be introdu
ed by two-side rewrite rules.

The plan is quite simple: identify su
h rules, orient and 
omplete them into a


anoni
al rewrite system (after all, the situation is very similar to string-rewriting

systems for monoid presentations).

In the remaining part of the paper, we make the following 
onventions:

� we shall use letters �; �; : : : for arrows fromT

1

[T

2

, letters �

1

; �

1

; : : : for arrows

from T

1

, letters �

2

; �

2

; : : : for arrows from T

2

and letters �

0

; �

0

; : : : for arrows

from T

0

; noti
e that any arrow like �

1

may happen to 
ome from T

0

, the vi
e

versa however 
annot be;

� instead of indi
ating types (i.e. obje
ts of Lawvere 
ategories) with X

n

;X

m

; : : :

we may use letters Y;Z; U; : : : if the knowledge of the exponent does not matter;

letter X however 
an only indi
ate X

1

;

� roman letters 
an be used to indi
ate arrows having 
odomain X, that is a

1

for instan
e, stands for an arrow in T

1

(whi
h might belong to T

0

too) having

domain some Y = X

n

, but whose 
odomain 
an only be X = X

1

.

Next, we give main de�nitions for path rewriting. Let S be a set of pairs of paths;

we write

(i) K )

S

K

0

(or simply K ) K

0

, leaving S as understood from the 
ontext) i�

K = K

1

; L;K

2

and K

0

= K

1

; R;K

2

for some pair hL;Ri 2 S;

(ii) K ,

S

K

0

(or simply K , K

0

) i� K = K

1

; L;K

2

and K

0

= K

1

; R;K

2

for some

pair hL;Ri su
h that either hL;Ri 2 S or hR;Li 2 S;

(iii) K )

�

S

K

0

(or simply K )

�

K

0

) for the re
exive-transitive 
losure of )

S

;

(iv) K ,

�

S

K

0

(or simply K ,

�

K

0

) for the least equivalen
e relation 
ontaining

)

S

.

Clearly ,

�

is the least stable equivalen
e relation extending S. Pairs hL;Ri 2 S

will be dire
tly written as L) R and 
alled rules of S; alternatively, they might be

written as L , R (and 
alled basi
 equations of S), but in su
h a 
ase we ta
itly

assume that S is symmetri
, i.e. that S 
ontains hR;Li in 
ase it 
ontains hL;Ri (in

su
h a 
ase e.g. relations ) and , obviously 
oin
ide).

Next theorem a

omplishes our �rst goal (`�nding appropriate basi
 equations'):

9



Theorem 3.1 Let P be given by the following two kinds of pairs of paths:

�

i

; �

i

, �

i

Æ �

i

(i = 1; 2)

1� �

2

; �

1

� 1, �

1

� 1; 1� �

2

(where in the last pair we have

�

1

: Y

1

�! Z

1

�

2

: Y

2

�! Z

2

and so

1� �

2

: Y

1

� Y

2

�! Y

1

� Z

2

�

1

� 1 : Y

1

� Z

2

�! Z

1

� Z

2

):

We have that T

1

+

T

0

T

2

is isomorphi
 to the Lawvere 
ategory having as arrows the

equivalen
e 
lasses of paths under the relation ,

�

P

.

Proof. Let P be the 
ategory having fX

n

g

n�0

as obje
ts and as arrows X

n

�!

X

m

the equivalen
e 
lasses (wrt ,

�

) of paths of domain X

n

and 
odomain X

m

.

Composition of fKg and fLg is fK;Lg. Identity of X

n

turns out to be just f1

X

n

g.

We �rst show that P has �nite produ
ts. X

0

= 1 is obviously terminal; in fa
t

any path K : Y �! 1 is equivalent to the singleton path h i

Y

by iterated appli
ations

of the �rst basi
 equation of P (last member of K must be some h i

Z

, so it 
omposes

with the last-but-one member giving again something of the same kind, et
.).

Given obje
ts Y

1

= X

n

1

; Y

2

= X

n

2

, we take Y

1

�Y

2

(i.e.X

n

1

+n

2

) as binary produ
t

and f�

Y

1

g; f�

Y

2

g as proje
tions (here �

Y

1

; �

Y

2

are obviously the proje
tions in T

0

).

Let us now take two paths K

1

;K

2

of domain Z and 
odomains Y

1

; Y

2

, respe
tively.

Suppose for instan
e that

K

1

= �

1

; : : : ; �

r

K

2

= �

1

; : : : ; �

s

:

Let hK

1

;K

2

i be the path:

Z

h1

Z

;1

Z

i

�! Z � Z

1

Z

�K

2

�! Z � Y

2

K

1

�1

Y

2

�! Y

1

� Y

2

where 1

Z

�K

2

is (1

Z

��

1

); : : : ; (1

Z

��

s

) (K

1

� 1

Y

2

is de�ned analogously). We show

that fhK

1

;K

2

ig enjoys the universal property for pairs. In fa
t

h1

Z

; 1

Z

i; (1

Z

�K

2

); (K

1

� 1

Y

2

); �

Y

1

,

�

K

1

by su

essive appli
ations of the �rst basi
 equation of P (we have (�

r

� 1

Y

2

) Æ �

Y

1

=

�

dom(�

r

)

Æ �

r

, et
. so we �nally get h1

Z

; 1

Z

i; (1

Z

�K

2

); �

dom(�

1

)

;K

1

,

�

K

1

, be
ause

dom(�

1

) = Z and for every j, (1

Z

� �

j

) Æ �

Z

= �

Z

). Similarly

h1

Z

; 1

Z

i; (1

Z

�K

2

); (K

1

� 1

Y

2

); �

Y

2

,

�

K

2

10



(by the same passages in di�erent order).

Let now K be another path from Z into Y

1

� Y

2

su
h that K;�

Y

1

,

�

K

1

and

K;�

Y

2

,

�

K

2

. We must have K = K

0

; h


1

; 


2

i, for some h


1

; 


2

i : U �! Y

1

� Y

2

;

so K

0

; 


1

,

�

K

1

and K

0

; 


2

,

�

K

2

. From this, a glan
e to the shape of our basi


equations

9

yields (K

0

� 1

Y

2

); (


1

� 1

Y

2

) ,

�

(K

1

� 1

Y

2

) and (1

Z

�K

0

); (1

Z

� 


2

) ,

�

(1

Z

�K

2

). Consequently

hK

1

;K

2

i ,

�

h1

Z

; 1

Z

i; (1

Z

�K

0

); (1

Z

� 


2

); (K

0

� 1

Y

2

); (


1

� 1

Y

2

):

We only have to show that this last path is equivalent to K = K

0

; h


1

; 


2

i. If K

0

=

Æ

1

; : : : ; Æ

l

, by repeated appli
ations of the se
ond basi
 equation (�rst basi
 equation

is also used e.g. in 
ontra
ting (1� Æ

j

); (Æ

j

� 1) into Æ

j

� Æ

j

), we have that

h1

Z

; 1

Z

i; (1

Z

�K

0

); (1

Z

� 


2

); (K

0

� 1

Y

2

); (


1

� 1

Y

2

) ,

�

h1

Z

; 1

Z

i; (K

0

�K

0

); (


1

� 


2

)

(where K

0

�K

0

is (Æ

1

� Æ

1

); (Æ

2

� Æ

2

); : : : ; (Æ

l

� Æ

l

)). Finally, observe that h1

Z

; 1

Z

i Æ

(Æ

1

� Æ

1

) = Æ

1

Æ h1


od(Æ

1

)

; 1


od(Æ

1

)

i, et
. hen
e repeated appli
ations of the �rst basi


equation yield

hK

1

;K

2

i ,

�

K

0

; h1

U

; 1

U

i; 


1

� 


2

, K

0

; h


1

; 


2

i;

as wanted.

In order to 
he
k that P is isomorphi
 to T

1

+

T

0

T

2

, we show it enjoys the related

universal property. Fun
tors

F

1

: T

1

�! P F

2

: T

2

�! P

asso
iating with �

i

the equivalen
e 
lass f�

i

g obviously 
ommute with the in
lusions

I

1

: T

0

�! T

1

and I

2

: T

0

�! T

2

. Now let G

i

: T

i

�! C (i = 1; 2) be su
h

that I

1

Æ G

1

= I

2

Æ G

2

. There is in fa
t a unique fun
tor G : P �! C su
h that

F

1

Æ G = G

1

and F

2

Æ G = G

2

: it is the fun
tor asso
iating with f�

i

1

1

; : : : ; �

i

k

k

g the

arrow G

i

1

(�

i

1

1

)Æ � � � ÆG

i

k

(�

i

k

k

). This de�nition is for
ed by the 
onditions F

1

ÆG = G

1

and F

2

ÆG = G

2

and is good be
ause basi
 equations of P express identities holding

in any 
ategory with �nite produ
ts. This 
ompletes the proof of the theorem. a

9

For the 
ase of the se
ond basi
 equation, you need identities like 1

Y

� (Æ � 1

Z

) = 1

Y

� Æ �

1

Z

= (1

Y

� Æ) � 1

Z

, whi
h hold in Lawvere 
ategories (in fa
t, if e.g. Y = X

n

; Z = X

m

and

Æ = hd

1

; : : : ; d

k

2

i : X

k

1

�! X

k

2

, then unravelling the de�nitions the three members are all equal to

h�

1

; : : : ; �

n

; � Æ d

1

; : : : ; � Æ d

k

2

; �

n+k

1

+1

; : : : ; �

n+k

1

+m

i;

where � = h�

n+1

; : : : ; �

n+k

1

i). The point is that in Lawvere 
ategories the �nite produ
t stru
ture

is freely generated (a
tually by one obje
t); this is usual for 
ategories 
oming from synta
ti
 
al
uli,

however in the general 
ontext of arbitrary 
ategory with produ
ts su
h identities hold only up to

(
oherent) isomorphisms.
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In the appli
ations, we should keep in mind that the isomorphism of 
ategories

among T

1

+

T

0

T

2

and P is the unique expansion to the signature 


1

[ 


2

of the

models F

1

: T

1

�! P , F

2

: T

2

�! P asso
iating with �

i

the equivalen
e 
lass f�

i

g.

This means the following: given an 


1

[


2

-term t, the universal model (isomorphism)

U : T

1

+

T

0

T

2

�! P interpretes it as the equivalen
e 
lass of any path obtained by

expressing t as an iterated 
omposition of terms whi
h are pure, i.e. whi
h are either




1

or 


2

-terms. Su
h a path (
alled a splitting path for t) 
an be e�e
tively 
omputed

from t in many ways (possibly yielding not the same path, but yielding in any 
ase,

�

-

equivalent paths); one might for instan
e adopt usual abstra
tion of alien subterms, or

alternatively make use of the following simply des
ribed indu
tive pro
edure (whi
h

applies to any tuple t

1

; : : : ; t

n

of terms having variables in
luded in some �xed list

x

1

; : : : ; x

m

):

- if t

1

; : : : ; t

n

are all 


1

or 


2

-terms, a splitting path is the singleton path

hft

1

g; : : : ; ft

n

gi

having domain X

m

and 
odomain X

n

(re
all that arrows in T

1

;T

2

are equiv-

alen
e 
lasses of terms under provable identity in the 
orresponding theory);

- otherwise, we have e.g. that t

i

= f(u

1

; : : : ; u

k

); a splitting path K of

t

1

; : : : ; t

i�1

; u

1

; : : : ; u

k

; t

i+1

; : : : ; t

n

is given (we apply multiset indu
tion on term 
omplexities) and it has 
odomain

X

n�1+k

, so we 
an take

K; hfx

1

g; : : : ; ff(x

i

; : : : ; x

i+k

)g; : : : ; fx

n�1+k

gi

as a splitting path for t

1

; : : : ; t

n

.

It is now 
lear how we 
an deal with word problems: to de
ide whether t and u are

T

1

+

T

0

T

2

-equal, it is suÆ
ient to split them into paths K and L a

ording to one

of the above mentioned pro
edures and then 
he
k whether K ,

�

L holds or not.

Of 
ourse, this will be
ome 
onvenient only after turning our basi
 equations into a


anoni
al rewriting system. Let us see in any 
ase an example.

Example Let us prove the well-known fa
t from elementary algebra saying that

it is not possible to endow a given distributive latti
e with 0 and 1 with two di�erent

Boolean algebra stru
tures (the 
omplement, in 
ase it exists, is unique). Let T

0

be

the theory of distributive latti
es with 0 and 1 and let T

1

; T

2

be the theory of Boolean

algebras. We show that

`

T

1

+

T

0

T

2

:

1

x

1

= :

1

x

1

^ :

2

x

1

12



(here :

i

is 
omplement in T

i

, what we prove is :

1

x

1

� :

2

x

1

). We take X

:

1

x

1

�! X

as splitting path of :

1

x

1

(we usually drop bra
kets in the examples, to be pre
ise we

should write X

f:

1

x

1

g

�! X); as splitting path of :

1

x

1

^ :

2

x

1

, we take

X

h:

1

x

1

;x

1

i

�! X

2

x

1

^:

2

x

2

�! X:

Noti
e we 
ould have used

X

hx

1

;:

2

x

1

i

�! X

2

:

1

x

1

^x

2

�! X

istead: indeed the two paths are ,

�

-equivalent (just expand h:

1

x

1

; x

1

i; x

1

^:

2

x

2

to

hx

1

; x

1

i; h:

1

x

1

; x

2

i; hx

1

;:

2

x

2

i; x

1

^x

2

, then apply se
ond basi
 equation and 
ontra
t

on
e again). We need to show that

:

1

x

1

,

�

h:

1

x

1

; x

1

i; x

1

^ :

2

x

2

:

For this, let us 
onsider the path

K = h:

1

x

1

; x

1

i; hx

1

; x

2

; x

1

^ x

2

i; x

1

^ (:

2

x

2

_ x

3

);

We have

K , h:

1

x

1

; x

1

i; x

1

^ (:

2

x

2

_ (x

1

^ x

2

)) , :

1

x

1

be
ause fx

1

^ (:

2

x

2

_ (x

1

^ x

2

))g = fx

1

g. On the other hand

K , h:

1

x

1

; x

1

; x

1

^ :

1

x

1

i; x

1

^ (:

2

x

2

_ x

3

),

, h:

1

x

1

; x

1

i; hx

1

; x

2

; 0i; x

1

^ (:

2

x

2

_ x

3

),

, h:

1

x

1

; x

1

i; x

1

^ :

2

x

2

:

In 
on
lusion, we have

:

1

x

1

,

�

K ,

�

h:

1

x

1

; x

1

i; x

1

^ :

2

x

2

as wanted. a

Noti
e that in the above example we sometimes repla
ed terms from 


i

(i =

1; 2) with terms from 


0

, when we realized this was possible. Su
h passages are

indispensable in order to a
tivate the �rst basi
 equation (whi
h applies to 
onse
utive

equally 
oloured terms), but they might be non e�e
tive. The additional hypotheses

we shall make on our data in order to be able to orient and 
omplete basi
 equations

into a 
anoni
al rewrite system will also be suÆ
ient in order to make su
h passages

e�e
tive.

13



4 Orientation

Before beginning orientation and 
ompletion, we make a modi�
ation to our `dataty-

pes', due to the fa
t that we do not want to bother distinguishing paths whi
h are mere

alphabeti
 variants ea
h other. Formally, the involved de�nitions are the following (let

K be the path Y

1

�

1

�! � � �

�

k

�! Y

k+1

and let L be `parallel' path Y

1

�

1

�! � � �

�

k

�! Y

k+1

,

with �

i

; �

i

equally 
oloured and having the same domain and 
odomain):

� K is said to be a �-renaming of L (where � = f�

i

: Y

i

�! Y

i

g

1�i�k+1

is a list

of renamings)

10

i� the following squares

Y

i

Y

i+1

-

�

i

Y

i

Y

i+1

-

�

i

?

�

i

?

�

i+1


ommute for i = 1; : : : ; k (otherwise said, we have �

i

= �

�1

i

Æ�

i

Æ �

i+1

for all i);

we write L = �(K) in order to express that L is (the) �-renaming of K;

� K is said to be the �-alphabeti
 variant of L (where � = f�

i

: Y

i

�! Y

i

g

1�i�k+1

is a list of renamings) i� it is the �-renaming of L and moreover �

1

= 1

Y

1

and �

k+1

= 1

Y

k+1

(the reason for this de�nition is that variables in internal

equivalen
e 
lasses of terms in a path are 
onsidered bounded).

Example. For every permutation � on the n-elements set, we have that path

K

1

; ha

1

; : : : ; a

n

i; �;K

2

is an alphabeti
 variant of the path

K

1

; ha

�(1)

; : : : ; a

�(n)

i; h�

�

�1

(1)

; : : : ; �

�

�1

(n)

i Æ �;K

2

(here K

1

;K

2

might be empty). Thus applying alphabeti
 variants allows permuting

the 
omponents of an arrow in a path (provided su
h arrow is not in last position).

a

Example. Path

W

K

1

�! Y � Z � U

h�;�

Z

i

�! V � Z

K

2

�! T

10

Re
all from Se
tion 2 that a renaming X

n

�! X

n

in a Lawvere 
ategory is an n-tuple of

proje
tions of the kind h�

�(1)

; : : : ; �

�(n)

i, where � is a permutation on f1; : : : ; ng.

14



is an alphabeti
 variant of the path

W

K

1

Æh�

Y

;�

Z

;�

U

i

�! Y � U � Z

hh�

Y

;�

Z

;�

U

iÆ�;�

Z

i

�! V � Z

K

2

�! T

(here only K

2

might be empty and K

1

Æ h�

Y

; �

Z

; �

U

i is K

1

with last arrow 
omposed

with h�

Y

; �

Z

; �

U

i). Thus applying alphabeti
 variants allows assuming that 
ertain

proje
tions (lo
ated not in �rst position) proje
t, say, on last 
omponents of their

domains. a

The 
ontent of the last two examples will be frequently and ta
itly used within

the te
hni
al Se
tions of the paper.

We shall apply rewriting on equivalen
e 
lasses of paths modulo `being an alpha-

beti
 variant of'. This needs some additional 
onventions on our rules, be
ause we

want to have the following property (making the rewriting pro
ess easily manageable):

if K rewrites to L, then any alphabeti
 variant of K rewrites to some alphabeti
 vari-

ant of L. In addition, notation of 
ertain rules may be awkward in 
ase we do not

stipulate anything about their alphabeti
 variants. Consequently, we stipulate that

the renaming of any rule is always ta
itly supposed to be available as a rule: by this,

we mean that if K ) K

0

is a rule, then �(K)) �

0

(K

0

) is also a rule, for any list �; �

0

of renamings su
h that �rst and last 
omponents of �; �

0

are respe
tively equal.

11

A 
onsequen
e of the above stipulation is that the normal forms we eventually

obtain, will be unique only up to alphabeti
 variants. Che
king whether two paths

are alphabeti
 variants ea
h other, in 
ase we know they are both in normal forms,

does not substantially a�e
t eÆ
ien
y, given the parti
ular stru
ture of normal forms

(we shall turn on that in Se
tion 10).

Before going on, we need another preliminary indispensable de
ision about our

datatypes. As evidentiated also in the example at the end of Se
tion 3, terms like

f(t

1

; t

2

), where f 2 


0

and where t

i

(x

1

) is a pure 


i

-term, have (at least) two di�erent

splitting paths, namely

X

ht

1

(x

1

);x

1

i

�! X

2

f(x

1

;t

2

(x

2

))

�! X and X

hx

1

;t

2

(x

1

)i

�! X

2

f(t

1

(x

1

);x

2

)

�! X:

Our �nal aim is that of having (uniqueness of) normal forms for paths, so we must

de
ide on
e for all whi
h one has to be 
onsidered in normal form. This 
hoi
e is


learly 
onventional, but has to be done one way or another: we 
hoose the former

path. This yields to the following notion: say that a path is well-
oloured i� it has

the form K;�

2

(where K is possibly empty). This means that the last arrow in a

well-
oloured path must 
ome from T

2

(whi
h does not ex
lude it might 
ome from

T

0

as well).

We modify our basi
 equations so that we need to 
onsider only well-
oloured

paths. For a path K : Y �! Z, let K

+

be the well-
oloured path K; 1

Z

.

11

We shall of 
ourse always deal with rules K ) K

0

su
h that K and K

0

agree on domains and


odomains. Thus, our 
onvention says that �(K) ) �(K

0

) is a rule in 
ase K ) K

0

is a rule,

� = f�

1

; : : : ; �

n

g, �

0

= f�

0

1

; : : : ; �

0

m

g and �

1

= �

0

1

and �

n

= �

0

m

.

15



Let us reformulate our basi
 equations as follows:

(E1)

1

�

1

; �

1

; 
 , �

1

Æ �

1

; 


(E1)

2

�

2

; �

2

, �

2

Æ �

2

(E2) 1� �

2

; �

1

� 1; � , �

1

� 1; 1� �

2

; �:

These new equations do not allow to rewrite a well-
oloured path into a non well-


oloured path; noti
e also that the `inter
hange basi
 equation' 1 � �

2

; �

1

� 1 ,

�

1

� 1; 1� �

2

now does not apply anymore in the last position of a path.

As we said, we shall only 
onsider from now on only well-
oloured paths subje
t

to the new basi
 equations (E1)

i

; (E2).

12

There is no loss in that be
ause for well-


oloured paths K;L, we have K ,

�

L (a

ording to the old basi
 equations) i�

K ,

�

L (a

ording to the new basi
 equations). In fa
t, one side is trivial; for the

other side, let us 
onsider a ,-
hain like

K = K

0

, K

1

, � � � , K

n

= L

obtained a

ording to the old basi
 equations. We thus have

K

+

= K

+

0

, K

+

1

, � � � , K

+

n

= L

+

a

ording to the new basi
 equations; now two appli
ations of (E1)

2

yields K , K

+

and L , L

+

be
ause K;L are well-
oloured. Thus K ,

�

L holds by using the new

equations too.

The obvious orientations of (E1)

1

; (E1)

2

are

(R

1




) �

1

; �

1

; 
 ) �

1

Æ �

1

; 


(R

2




) �

2

; �

2

) �

2

Æ �

2

:

Orientation of (E2) depends on the 
olour of �. In 
ase � has 
olour 2, we orient it

as follows (supposing �

2

has 
olour 2 too):

(R

2

p

)

�

1� �

2

2

; �

1

� 1; �

2

) �

1

� 1; (1� �

2

2

) Æ �

2

where se
ond member has been redu
ed by a further (R

2




)-rewrite step. In 
ase �

has 
olour 2, there are no other relevant 
ases. If �

1

; �

2

have both 
olour 1, the two

members are joinable by (R

1




) and the equation 
an be deleted.

13

If �

2

has 
olour 1

and �

1

has 
olour 2, we do not need to add the rule

�

2

1

� 1; 1� �

1

2

; �

2

) 1 � �

1

2

; (�

2

1

� 1) Æ �

2

12

Of 
ourse, this means also that, when 
omputing the splitting path of a term, identity should be

added at the end in 
ase the top symbol of the term has wrong 
olour.

13

We tolerate the use of (R

2

p

)

�

in 
ase �

1

; �

2

both have 
olour 2. As a general philosophy, we prefer

not to put provisoes on appli
ations of rules, unless needed. So, for (R

2

p

)

�

(and (R

1

p

)

�

below), the

only proviso is that �rst and third arrow in �rst member must be equally 
oloured.

16



be
ause this is simply a renaming of (R

2

p

)

�

and our 
onvention about renamings

automati
ally in
ludes it. Noti
e that (R

2

p

)

�

applies also in 
ase � 2 T

0

(the fa
t

that � has 
olour 2 does not prevent it from belonging to T

0

).

In 
ase � 2 T

1

nT

0

, both members of (E2) 
annot o

ur in last position of a

well-
oloured path; taking into a

ount this fa
t, the appropriate oriented rule is

(R

1

p

)

�

1� �

1

2

; �

1

� 1; �

1

; 
 ) �

1

� 1; (1� �

1

2

) Æ �

1

; 


Although, stri
tly speaking, we do not need su
h a rule in 
ase � 2 T

0

(be
ause

orientation in this 
ase is like in (R

2

p

)

�

), we allow its use in this 
ase too.

During next se
tion 
ompletion pro
ess, rules (R

i

p

)

�

will be removed, whereas the

rules (R

i




) (
alled 
omposition rules) are permanent (whenever a rule is deleted during


ompletion, we always mark its name with a �).

Let us summarize the 
ontent of this se
tion. We 
all R

�

the rewriting system

given by the rules

(R

1




); (R

2




); (R

1

p

)

�

; (R

2

p

)

�

:

R

�

is our starting rewriting system: this system is sound and 
omplete for our pur-

poses (de
iding path equivalen
e a

ording to system P of Theorem 3.1), be
ause the

above dis
ussion shows that

Lemma 4.1 For well-
oloured paths K

1

;K

2

, we have K

1

,

�

P

K

2

i� K

1

,

�

R

�

K

2

.

5 Completion

System R

�

is 
learly inadequate be
ause it is far from being 
on
uent, so we shall

modify it by using Knuth-Bendix style 
ompletion as an heuristi
 guide.

Let us re
all some general notions 
on
erning a rewrite system S (these notions


an be formulated within the 
ontext of abstra
t rewrite systems as in [2℄). System

S is said to be:

� terminating i� there are no in�nite redu
tion sequen
es

K

1

)

S

K

2

)

S

� � �K

i

)

S

� � �

� 
on
uent i� K )

�

S

K

1

and K )

�

S

K

2

imply that K

1

;K

2

are joinable (i.e. that

there exists K

0

su
h that K

1

)

�

S

K

0

and K

2

)

�

S

K

0

);

� lo
ally 
on
uent i� K )

S

K

1

and K )

S

K

2

imply that K

1

;K

2

are joinable;

� 
anoni
al i� it is terminating and 
on
uent i� (by Newmann's Lemma) it is

terminating and lo
ally 
on
uent.

17



It 
an be shown (see [2℄) that in a 
anoni
al rewriting system S the relationK

1

,

�

S

K

2

holds i� K

1

and K

2

have the same normal form, whi
h is moreover unique (a normal

form for L is some L

0

su
h that L)

�

S

L

0

and there is no L

00

su
h that L

0

)

S

L

00

).

In order to prove 
anoni
ity of our path rewriting systems, we show that they are

lo
ally 
on
uent and terminating; lo
al 
on
uen
e is, in its turn, easily redu
ed to

the fa
t that 
riti
al pairs are all joinable. We re
all that a 
riti
al pair is any pair

of paths obtained as follows

R

1

; L

2

L

1

; R

2

L

1

;M;L

2

�

�

�	

�

�

�R

where M is non empty and

L

1

;M ) R

1

and M;L

2

) R

2

are both rules of the system (we say in this 
ase that su
h rules superpose).

In 
ase some 
riti
al pairs are not joinable, the obvious thing to do is to enri
h the

system by adding it su
h oriented 
riti
al pairs as new rules. In addition, experien
e

shows that it is better also to simplify - if possible - rules whi
h are generated from

the pro
edure. The following operations 
on
erning a rewrite system S are in order:

(i) we 
an add to S a set of new rules fL

i

) R

i

g

i

su
h that (L

i

; R

i

) or (R

i

; L

i

) is

a 
riti
al pair generated by rules in S;

(ii) we 
an divide rules in S in two disjoint groups S

0

[ S

00

and remove all rules in

S

00

in 
ase we realize that left and right member of su
h rules are joinable in S

0

;

(iii) we 
an divide rules in S in two disjoint groups S

0

[ S

00

and repla
e any rule

L) R in S

00

by some L) R

0

su
h that R)

�

S

0

R

0

.

14

Clearly if S

0

results from S after a �nite number of appli
ations of (i)-(ii)-(iii), we

have that S

0

is equivalent to S (in the sense that we have K

1

,

�

S

K

2

i� K

1

,

�

S

0

K

2

).

If we are lu
ky, we 
an produ
e in this way a 
anoni
al rewrite system S

0

starting

from a given S. Noti
e that the above 
ompletion pro
edure - as it is formulated here

- only has heuristi
 value (it 
annot be fully me
hanized as ea
h step in (i)-(ii)-(iii)

may 
onsist in in�nitely many operations).

Let us now apply 
ompletion to R

�

. The �rst obvious superposition we have in

R

�

is obtained by 
onsidering rules (R

1




) and (R

2




) as in the fork:

14

We shall not need left member simpli�
ation steps.
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�

i

Æ �

0

; �

j

�

i

; �

0

Æ �

j

�

i

; �

0

; �

j

(R

i




)

�

�

�	

(R

j




)

�

�

�R

(with i 6= j and possibly with a 
 appended everywhere to the right in 
ase j = 1).

Any naif global orientation of these 
riti
al pairs in one sense or in the other, would

immediately 
ause in�nite rewriting. Orientation from left to right �

i

Æ �

0

; �

j

)

�

i

; �

0

Æ�

j

would produ
e for instan
e (let � have 
odomain Y and let � have domain

Y ):

�; � = � Æ h1

Y

; 1

Y

i Æ �

1

; �

) � Æ h1

Y

; 1

Y

i; �

1

Æ � = � Æ h1

Y

; 1

Y

i Æ h1

Y�Y

; 1

Y�Y

i Æ �

0

1

; �

1

Æ �

) � � �

where �

1

: Y � Y ) Y and �

0

1

: (Y � Y )� (Y � Y ) �! Y � Y are �rst proje
tions.

Criti
al pairs

(CP ) h�

i

; �

0

Æ �

j

; �

i

Æ �

0

; �

j

i

will be di�erently oriented, depending on the nature of the arrow �

0

. In 
ase the

signature 


0

is empty, the solution is the following 
ouple of rules:

(Rpr)

�

�

i

; � Æ �

j

) �

i

Æ �; �

j

(Rdi)

�

�

i

Æ Æ; �

j

) �

i

; Æ Æ �

j

where � is any stri
t proje
tion and Æ is any stri
t diagonal

15

(a proje
tion - resp.

diagonal - is stri
t i� it is not a renaming). Given that any �

0

fa
tors as � Æ Æ, where

� is a proje
tion and Æ is a diagonal, this pair of rules is suÆ
ient to make all 
riti
al

pairs (CP ) joinable, if 


0

is empty.

In our 
ase, we 
annot suppose 


0

to be empty, however we 
an try to identify two

di�erent 
lasses of arrows in T

0

forming a fa
torization system; arrows in the �rst


lass will be asso
iated `to the left' and arrows in the se
ond 
lass will be asso
iated

`to the right', as in the 
ase in whi
h 


0

is empty. There is a standard notion of

fa
torization system in 
ategory theory (see [6℄), however su
h a notion is too strong

in the present 
ontext, so that we weaken it.

Let C be any 
ategory; by a weak fa
torization system in C, we mean a pair of


lasses of arrows (E ;M) from C su
h that:

(i) both E and M 
ontain identities and are 
losed with respe
t to left and right


omposition with arrows in E \M;

15

Re
all from Se
tion 2 that we 
all proje
tions (resp. diagonals) arrows X

n

�! X

m

whi
h are

m-tuples of distin
t �

i

(resp. m-tuples of �

i

in
luding all the �

1

; : : : ; �

n

).

19



(ii) for every � 2 C, there are " 2 E , � 2M su
h that � = " Æ �;

(iii) whenever we have a 
ommutative square

Y

2

Y

-

�

2

Y

0

Y

1

-

"

1

?

"

2

?

�

1

with "

1

; "

2

2 E , �

1

; �

2

2M, there is a unique � 2 E\M su
h that "

2

Æ� = "

1

and

� Æ�

1

= �

2

(this 
ondition says that the fa
torization given by (ii) is essentially

unique).

>From the above axioms it follows that arrows � 2 E \M are invertible (be
ause

they have two trivial fa
torizations, namely � Æ 1 and 1 Æ �, hen
e...); su
h arrows

will be just renamings in our 
ases. Noti
e that we do not ask for E ,M to be 
losed

under 
omposition, not even that they 
ontain isomorphisms and are `orthogonal'

ea
h other (like in standard fa
torization systems).

Main Example. For any equational theory T = (
; Ax), the 
orresponding

Lawvere 
ategory T always has a weak fa
torization system (E ;M) (whi
h we 
all

the standard weak fa
torization system for T):

� arrows in E are just proje
tions;

� arrows in M are those � su
h that in 
ase it happens that � = " Æ �

0

(with

" 2 E), we must have that " is just a renaming.

The fa
torizations � = �

"

Æ �

�

(with �

"

2 E , �

�

2 M) are obtained as follows. Let

~

t(x

1

; : : : ; x

n

) be a tuple of terms 
ontaining at most the variables x

1

; : : : ; x

n

; say that

this tuple is n-minimized i� for no i = 1; : : : ; n we have `

T

~

t =

~

t(


0

=x

i

).

16

Now we

have that the m-tuple of terms

~

t is n-minimized i� the arrow � : X

n

�! X

m

belongs

to M, where � is the ve
tor of the equivalen
e 
lasses of terms represented by the

m 
omponents of

~

t (if, say,

~

t = ht

1

; : : : ; t

m

i, then � is hft

1

g; : : : ; ft

m

gi). Suppose

in fa
t on one side that we have � = " Æ �

0

, where " : X

n

�! X

k

is the tuple

h�

i

1

; : : : ; �

i

k

i; as su
h a tuple is a stri
t proje
tion, the i

j

are all distin
t and some

s = 1; : : : ; n is missed. Let �

0

be formed by the equivalen
e 
lasses represented

by the terms

~

t

0

(x

1

; : : : ; x

k

); the relation � = " Æ �

0

means that `

T

~

t(x

1

; : : : ; x

n

) =

~

t

0

(x

i

1

=x

1

; : : : ; x

i

k

=x

k

). Repla
ing x

s

by the 
onstant 


0

, we get

`

T

~

t(


0

=x

s

) =

~

t

0

(x

i

1

; : : : ; x

i

k

); hen
e `

T

~

t(


0

=x

s

) =

~

t

16

Notations like `

T

~u = ~v, for ~u = hu

1

; : : : ; u

m

i and ~v = hv

1

; : : : ; v

m

i, mean that `

T

V

m

j=1

u

j

= v

j

.

Re
all that in Se
tion 2 we assumed that there is at least one ground term 


0

in our signatures.

20




ontrary to the fa
t that

~

t is n-minimized. Conversely, if

~

t is not n-minimized, we

have `

T

~

t(


0

=x

s

) =

~

t for some s, hen
e � admits a fa
torization through the proper

proje
tion h�

1

; : : : ; �

s�1

; �

s+1

; : : : ; �

n

i.

We so established that � : X

n

�! X

m

belongs toM i� it is represented by some

n-minimized ve
tor of terms. Let now � be arbitrary; how 
an we get the fa
torization

� = �

"

Æ �

�

, where �

"

2 E and �

�

2 M? This is easy: take any ve
tor of terms in

the equivalen
e 
lasses of � 
ontaining a minimal set of variables: if su
h a ve
tor

is

~

t(x

i

1

; : : : ; x

i

k

), then the fa
torization is � = h�

i

1

; : : : ; �

i

k

i Æ �, where � represents

the ve
tor of terms

~

t(x

1

; : : : ; x

k

). Noti
e that this pro
ess is e�e
tive in 
ase word

problem for T is solvable: one takes any

~

t representing � and then go on by repla
ing

variables in it by 


0

; the pro
edure stops when only terms not provably equal to

~

t 
an

be obtained.

Next we show that the above fa
torization is unique up to a renaming. Suppose

we have a 
ommutative square in T

X

k

X

n

-

�

1

X

m

X

l

-

"

2

?

"

1

?

�

2

with "

1

; "

2

2 E and �

1

; �

2

2 M. For the sake of simpli
ity, we 
an apply a suitable

renaming to X

m

so that we have "

1

= h�

1

; : : : ; �

k

i (i.e. "

1

proje
ts on �rst k 
om-

ponents) and "

2

= h�

j

1

; : : : ; �

j

l

i; now �

1

; �

2

must be represented by k, l-minimized

ve
tors of terms

~

t

1

;

~

t

2

. The 
ommutativity of the square says that we have

`

T

~

t

1

(x

1

; : : : ; x

k

) =

~

t

2

(x

j

1

; : : : ; x

j

l

):

By minimization, we must have f1; : : : ; kg = fj

1

; : : : ; j

l

g (otherwise, one 
an `redu
e'

variables in t

1

or t

2

by repla
ing them with 


0

); this means also that k = l. Now the

renaming h�

j

1

; : : : ; �

j

l

i : X

k

�! X

k

�lls the `bottom-top' diagonal of the square

X

k

X

n

-

�

1

X

k+l

X

k

-

"

2

?

"

1

?

�

2

(and is the unique su
h), as wanted. a

Using the above des
ribed standard weak fa
torization system (whi
h we 
onve-

niently 
all (E

0

;M

0

)) available in T

0

, we 
an repla
e rule (Rdi)

�

by the following

one

(R

�

)

�

�

i

Æ �; �

j

) �

i

; � Æ �

j

(� 2M

0

)
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whi
h is stronger than (Rdi)

�

be
ause diagonals always are in M

0

(they 
annot be

fa
tored through a stri
t proje
tion or, to say it di�erently, they always are repre-

sented by minimized ve
tors of terms). As rule (Rpr)

�

is kept, the e�e
t of rules

(Rpr)

�

and (R

�

)

�

is that all 
riti
al pairs (CP ) are now joinable (be
ause �

0


an

be fa
tored as �

0

"

Æ �

0

�

, with �

0

"

2 E

0

and �

0

�

2 M

0

). Apart from evident problems


on
erning the e�e
tiveness of appli
ability of rule (R

�

)

�

, this is still bad be
ause it

may on
e again produ
e in�nite rewriting. This is espe
ially evident in 
ase T

0

is not


ollapse-free. Suppose for instan
e we have a 
ollapsing equation like f(x

1

; x

1

) = x

1

in T

0

; then if we start with the path x

1

; t(x

1

) (where t(x

1

) is any term), we 
an

de
ompose x

1

as hx

1

; x

1

i Æ f(x

1

; x

2

), thus produ
ing the following rewrite steps:

hx

1

; x

1

i Æ f(x

1

; x

2

); t(x

1

) ) hx

1

; x

1

i; t(f(x

1

; x

2

)) ) x

1

; hx

1

; x

1

i Æ t(f(x

1

; x

2

))

yielding again x

1

; t(x

1

). We 
annot over
ome this problem without postulating any-

thing (after all, 
ombined solvable word problems might be unsolvable...). We shall

postulate that there is a 
anoni
al way of extra
ting M

0

-
omponents from terms in




i

(of 
ourse, we shall also have to assume that su
h extra
tion 
an be done in an

e�e
tive way, see Se
tion 10).

17

This extra assumption will restri
t rule (R

�

)

�

(or, to

put it in a di�erent form, will allow the 
ompletion/simpli�
ation pro
ess to get rid

of undesired instan
es of rule (R

�

)

�

). We need �rst to 
ome ba
k on
e again to the

abstra
t 
ategori
al framework.

Let C to be a sub
ategory of C

0

and let (E ;M) be a weak fa
torization system in

C. A weak fa
torization system (E

0

;M) in C

0

(noti
e that M is the same!) is said

to be a left extension of (E ;M) i� the following hold:

� E

0

\C = E ;

� if "

1

; "

2

2 E and if " 2 E

0

, then "

1

Æ" 2 E

0

and "Æ"

2

2 E

0

(whenever 
ompositions

make sense).

Noti
e that this implies that E - not ne
essarily E

0

- is 
losed under 
omposition. Let

us say that T

i

is 
onstru
tible over T

0

i� in T

i

there is a left extension (E

i

;M

0

) of

the standard weak fa
torization system (E

0

;M

0

) of T

0

.

Assumption. We assume that T

1

; T

2

are both 
onstru
tible over T

0

.

We postpone to Se
tion 10 a symboli
 translation of this assumption as well as the

analysis of some examples (and 
ounterexamples). For the moment, let us underline

that, as an e�e
t of the above assumption, we now have that any arrow �

i

admits

two fa
torizations, namely:

17

The assumption of [3, 4℄ may be seen as the stronger requirement that there is a maximal way of

extra
ting M

0

-
omponents (su
h stronger requirement is in
ompatible with existen
e of 
ollapsing

equations in T

0

).

22



� it 
an be fa
tored as �

i

"

Æ�

i

m

a

ording to the standard weak fa
torization system

(E

0

;M

i

) of T

i

(we re
all that here E

0

is formed by arrows whi
h are proje
tions,

whereasM

i

is formed by arrows represented by minimized -in the sense of the

theory T

i

- ve
tors of terms);

� it 
an be fa
tored as �

i

e

Æ �

i

�

a

ording to the left extension (E

i

;M

0

) of the

standard weak fa
torization system of T

0

(here the 
lass E

i

is axiomati
ally

given by the above Assumption, whereas M

0

is the 
lass of arrows from T

0

represented by minimized ve
tors of terms -in the sense of the theory T

0

).

18

Rules (Rpr)

�

, (R

�

)

�

are so restri
ted:

(R

"

) �

i

; �

j

) �

i

Æ �

j

"

; �

j

m

(R

�

) �

i

; �

j

) �

i

e

; �

i

�

Æ �

j

and 
alled "-extra
tion and �-extra
tion rules, respe
tively.

19

Let us 
all R

0

the

rewriting system formed by rules (R

i




); (R

"

); (R

�

); in Se
tion 6 we shall prove that

Theorem 5.1 R

0

is 
anoni
al.

As an e�e
t of the above Theorem, rules (Rpr)

�

; (Rdi)

�

; (R

�

)

�

are all 
an
eled

during 
ompletion/simpli�
ation pro
ess (be
ause their members are joinable in R

0

);

we shall nevertheless arti�
ially postpone 
an
ellation of rules (Rpr)

�

and (Rdi)

�

at

the end of the 
ompletion, be
ause we shall make further use of them in order to

identify the good superpositions/simpli�
ations steps needed to treat the remaining

rule (R

i

p

)

�

(whi
h 
auses some further 
on
uen
e problems).

In fa
t, in order to �nish our 
ompletion pro
ess we need only to identify a 
ouple

of very spe
i�
 superpositions yielding the right modi�
ation of the rule (R

i

p

)

�

(R

i

p

)

�

1� �

i

2

; �

j

1

� 1; �

i

) �

j

1

� 1; (1� �

i

2

) Æ �

i

(re
all that in 
ase i = 1, there is an extra arrow to the right of both members).

20

Let us 
onsider the path

Y

2

h


i

;1

Y

2

i

�! Y

1

� Y

2

1

Y

1

��

i

2

�! Y

1

� Z

2

�

j

1

�1

Z

2

�! Z

1

� Z

2

�

i

�! U

giving rise to the superposition (among rules (R

i




) and (R

i

p

)

�

)

18

These ve
tors of terms are also n-minimized in the sense of T

i

, given that T

i

is 
onservative over

T

0

.

19

It goes without saying that su
h rules do not apply in 
ase of trivial fa
torizations (i.e. when

�

j

"

-resp. �

i

�

- are, up to a renaming, just identities). We allow applying the rule also in 
ase i = j

(although in prin
iple this is not needed).

20

Re
all from Se
tion 4 that we allow j to be di�erent or equal to i.
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h


i

; �

i

2

i; �

j

1

� 1; �

i

h


i

; 1i; �

j

1

� 1; (1� �

i

2

) Æ �

i

h


i

; 1i; 1� �

i

2

; �

j

1

� 1; �

i

(R

i




)

�

�

�

�

�

�

�	

(R

i

p

)

�

�

�

�

�

�

�

�R

The related 
riti
al pair is oriented as follows:

(R

0

p

)

�

h


i

; �

i

2

i; �

j

1

� 1; �

i

) h


i

; 1i; �

j

1

� 1; (1� �

i

2

) Æ �

i

We need another �nal superposition (among (R

0

p

)

�

and (Rdi)

�

): 
onsider the path

(here �

j

: Y

1

� Z �! Y

2

)

Y

h


i

;Æ

i

;Æ

i

i

�! Y

1

� Z � Z

�

j

�1

Z

�! Y

2

� Z

�

i

�! U

and the superposition

h


i

; Æ

i

i; h�

j

; �

Z

i; �

i

h


i

; Æ

i

; 1

Y

i; �

j

� 1

Y

; (1

Y

2

� Æ

i

) Æ �

i

h


i

; Æ

i

; Æ

i

i; �

j

� 1

Z

; �

i

(Rdi)

�

�

�

�

�

�

�

�	

(R

i

p

)

�

�

�

�

�

�

�

�R

where we used the fa
t that h


i

; Æ

i

; Æ

i

i = h


i

; Æ

i

i Æ (1

Y

1

� �

Z

) (�

Z

is the diagonal

h1

Z

; 1

Z

i) and the fa
t that (1

Y

1

��

Z

) Æ (�

j

� 1

Z

) = h�

j

; �

Z

i (�

Z

is the proje
tion

Y

1

�Z �! Z). We are near to the end of the 
ompletion pro
ess; we �rst redu
e the

se
ond 
omponent of the above 
riti
al pair by using two (Rpr)

�

-redu
tion steps:

21

suppose that Æ

i

: Y �! Z has fa
torization

Y

Æ

i

"

�! Y

0

Æ

i

m

�! Z;

then we have

h


i

; Æ

i

; 1

Y

i; �

j

� 1

Y

; (1

Y

2

� Æ

i

) Æ �

i

+

h


i

; Æ

i

; 1

Y

i; �

j

� Æ

i

"

; (1

Y

2

� Æ

i

m

) Æ �

i

+

h


i

; Æ

i

; Æ

i

"

i; �

j

� 1

Y

0

; (1

Y

2

� Æ

i

m

) Æ �

i

21

This redu
tion is important: without it, we may have problems in the termination proof.
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So our �nal produ
ts rule is

(R

i

p

) h


i

; Æ

i

i; h�

j

; �

Z

i; �

i

) h


i

; Æ

i

; Æ

i

"

i; �

j

� 1

Y

0

; (1

Y

2

� Æ

i

m

) Æ �

i

(re
all we have an extra arrow to the right in both members in 
ase i = 1). Putting

types, �rst member is

(I) Y

h


i

;Æ

i

i

�! Y

1

� Z

h�

j

;�

Z

i

�! Y

2

� Z

�

i

�! U

whereas se
ond member is

(II) Y

h


i

;Æ

i

;Æ

i

"

i

�! Y

1

� Z � Y

0

�

j

�1

Y

0

�! Y

2

� Y

0

(1

Y

2

�Æ

i

m

)Æ�

i

�! U

We add a proviso for this rule: Æ

i

62 E

0

(that is, Æ

i


annot be a proje
tion). The

reason for this last proviso is that, in 
ase Æ

i

is a proje
tion, then the se
ond member

of (R

i

p

) 
an be re-written to the �rst by using rule (Rdi)

�

(thus 
ausing termination

problems). In fa
t, in 
ase Æ

i

is a proje
tion, we have that Æ

i

= Æ

i

"

and Æ

i

m

= 1

Z

,

hen
e the se
ond member is h


i

; Æ

i

; Æ

i

i; �

j

� 1

Z

; �

i

and we 
an rewrite it as follows

h


i

; Æ

i

; Æ

i

i; �

j

� 1

Z

; �

i

= h


i

; Æ

i

i Æ (1

Y

1

��

Z

); �

j

� 1

Z

; �

i

) h


i

; Æ

i

i; h�

j

; �

Z

i; �

i

thus getting the �rst member. To �nish, we observe that rules (R

i

p

)

�

and (R

0

p

)

�


an be

removed, be
ause their members be
ome joinable in the rewrite system R obtained

by adding (R

i

p

) to R

0

. We 
he
k it for the former rule, leaving the latter (whi
h is

treated in a very similar way) to the reader.

First member of (R

i

p

)

�

is

Y

1

� Y

2

h�

Y

1

;�

Y

2

Æ�

i

i

�! Y

1

� Z

2

h�

Y

1

Æ�

j

1

;�

Z

2

i

�! Z

1

� Z

2

�

i

�! U

whereas the se
ond member is

Y

1

� Y

2

�

j

1

�1

Y

2

�! Z

1

� Y

2

(1

Z

1

��

i

)Æ�

i

�! U:

Applying a (Rpr)

�

-rewrite step to the se
ond member, we get (suppose that Y

2

�

i

"

�!

Y

0

2

�

i

m

�! Z

2

):

(�) �

j

1

� 1

Y

2

; (1

Z

1

� �

i

) Æ �

i

) �

j

1

� �

i

"

; (1

Z

1

� �

i

m

) Æ �

i

:

Let us now operate on �rst member by su

essively using rules (R

i

p

); (Rpr)

�

; (R

j




) as

follows (to apply (R

i

p

), noti
e that �

Y

2

Æ �

i

= (�

Y

2

Æ �

i

"

) Æ �

i

m

, so by uniqueness this

25



is the fa
torization of �

Y

2

Æ �

i

in the standard weak fa
torization system of T

i

):

22

h�

Y

1

; �

Y

2

Æ �

i

i; h�

Y

1

Æ �

j

1

; �

Z

2

i; �

i

+

(R

i

p

)

h�

Y

1

; �

Y

2

Æ �

i

; �

Y

2

Æ �

i

"

i; h�

Y

1

Æ �

j

1

i � 1

Y

0

2

; (1

Z

1

� �

i

m

) Æ �

i

=

h�

Y

1

; �

Y

2

Æ �

i

; �

Y

2

Æ �

i

"

i; h�

Y

1

; �

Y

0

2

i Æ (�

j

1

� 1

Y

0

2

); (1

Z

1

� �

i

m

) Æ �

i

+

(Rpr)

�

h�

Y

1

; �

Y

2

Æ �

i

; �

Y

2

Æ �

i

"

i Æ h�

Y

1

; �

Y

0

2

i; �

j

1

� 1

Y

0

2

; (1

Z

1

� �

i

m

) Æ �

i

=

h�

Y

1

; �

Y

2

Æ �

i

"

i; �

j

1

� 1

Y

0

2

; (1

Z

1

� �

i

m

) Æ �

i

+

(R

j




)

�

j

1

� �

i

"

; (1

Z

1

� �

i

m

) Æ �

i

as in (�). In 
on
lusion, we obtained the rewriting system R whi
h is des
ribed by

Table 1 (in the last two rules of the Table, Z; Y

0

and Y

2

are the 
odomains of Æ

i

; Æ

i

"

and �

j

, respe
tively, as in the fully displayed paths (I) and (II) above).

23

Re
all that renamings of rules of R are available as rules of R. However, su
h a


onvention 
an be slightly simpli�ed, given that the above rules are all 
losed under

the operation of 
omposing �rst (or last) arrow in ea
h member by the same single

renaming. Thus we 
an merely stipulate that if L ) R is a rule, then L

0

) R

0

is

also a rule, where L

0

is any alphabeti
 variant of L and R

0

is any alphabeti
 variant

of R.

The 
ontent of the present se
tion 
an be so summarized (re
all that R is obtained

from R

�

by few 
ompletion steps):

Lemma 5.2 For well-
oloured paths K

1

;K

2

, we have K

1

,

�

R

K

2

i� K

1

,

�

R

�

K

2

.
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If �

i

is a proje
tion, rule (R

i

p

) does not apply, however in this 
ase 1

Z

1

� �

i

m

is the identity,

�

i

"

= �

i

and a single (R

j




)-rewrite step redu
es the �rst member as in (�).
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Noti
e the following subtility 
on
erning rule (R

1




) (a similar observation applies to rule (R

1

p

)

too): paths �

1

; �

0

and �

1

Æ �

0

are well-
oloured in 
ase the 
omposed arrow �

1

Æ �

0


ollapses to an

arrow from T

0

. In this 
ase, rule (R

1




) does not apply, but the two paths are nevertheless joinable by

eliminating peaks from the following ,

�

R

-
hain (a

ording to the instru
tions given in the 
on
uen
e

proof):

�

1

Æ �

0

( �

1

Æ �

0

; 1( �

1

; �

0

; 1) �

1

; �

0

:

The point behind that lies in the above mentioned properties of left extension of fa
torization systems:

if �

1

Æ �

0


ollapses, then (�

1

e

Æ (�

1

�

Æ �

0

)

"

) Æ (�

1

�

Æ �

0

)

�

is, by uniqueness, the fa
torization, in T

0

as

well as in T

1

, of the arrow �

1

Æ �

0

, hen
e we have

�

1

; �

0

) �

1

e

; �

1

�

Æ � ) �

1

e

Æ (�

1

�

Æ �

0

)

"

; (�

1

�

Æ �

0

)

�

) (�

1

e

Æ (�

1

�

Æ �

0

)

"

) Æ (�

1

�

Æ �

0

)

�

= �

1

Æ �

0

where last passage is now 
orre
t (it is an (R

2




)-step applied to arrows from T

0

).
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(R

1




) �

1

; �

1

; 
 ) �

1

Æ �

1

; 


(R

2




) �

2

; �

2

) �

2

Æ �

2

(R

"

) �; � ) � Æ �

"

; �

m

(R

�

) �; � ) �

e

; �

�

Æ �

(R

1

p

) h


1

; Æ

1

i; h�; �

Z

i; �

1

; � ) h


1

; Æ

1

; Æ

1

"

i; � � 1

Y

0

; (1

Y

2

� Æ

1

m

) Æ �

1

; �

where Æ

1

62 E

0

(R

2

p

) h


2

; Æ

2

i; h�; �

Z

i; �

2

) h


2

; Æ

2

; Æ

2

"

i; �� 1

Y

0

; (1

Y

2

� Æ

2

m

) Æ �

2

where Æ

2

62 E

0

Table 1: The system R

In Se
tion 9 we shall prove our main result, namely that

Theorem 5.3 R is 
anoni
al.

6 Lo
al 
on
uen
e, I

In this se
tion we will prove the 
anoni
ity of the system R

0

whi
h, we re
all, is the

system des
ribed by Table 2.

(R

1




) �

1

; �

1

; 
 ) �

1

Æ �

1

; 


(R

2




) �

2

; �

2

) �

2

Æ �

2

(R

"

) �; � ) � Æ �

"

; �

m

(R

�

) �; � ) �

e

; �

�

Æ �

Table 2: The system R

0

We begin by showing that R

0

is lo
ally 
on
uent: we single out all 
riti
al pairs

arising from superpositions between the rules of R

0

and we prove that they are
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joinable. Most of the 
ases 
an be redu
ed to the 
riti
al pairs treated in the following

lemma.

Lemma 6.1 The paths �

i

Æ �

0

; �

j

and �

i

; �

0

Æ �

j

are joinable in R

0

.

Proof. Let �

i

e

and �

i

�

be the e=� 
omponents of �

i

and let us 
onsider the following


ommutative diagram, where "

1

Æ � 
orresponds to the "=� fa
torization in T

0

of

�

i

�

Æ �

0

and "

2

Æ Æ

j

m

is the "=m fa
torization of � Æ �

j

in T

j

.

-

�

i

�

i

e

H

H

H

H

H

H

Hj

-

"

1

-

�

0

6

�

i

�

6

�

-

"

2

-

�

j

6

Æ

j

m

Sin
e �

i

e

Æ "

1

belongs to E

i

(re
all the de�nition of left extensions of fa
torization

systems) and Æ

j

m

belongs toM

j

, we have (up to a renaming):

(�

i

Æ �

0

)

e

= �

i

e

Æ "

1

(�

i

Æ �

0

)

�

= �

(�

i

�

Æ �

0

Æ �

j

)

"

= "

1

Æ "

2

(�

i

�

Æ �

0

Æ �

j

)

m

= Æ

j

m

We 
an do the following rewriting steps:

�

i

Æ �

0

; �

j

)

R

�

�

i

e

Æ "

1

; � Æ �

j

)

R

"

�

i

e

Æ "

1

Æ "

2

; Æ

j

m

�

i

; �

0

Æ �

j

)

R

�

�

i

e

; �

i

�

Æ �

0

Æ �

j

)

R

"

�

i

e

Æ "

1

Æ "

2

; Æ

j

m

and this proves the lemma. a

In subsequent se
tions we pro
eed with a systemati
 analyses of the 
ases. To simplify

the exposition, we treat (R

1




) and (R

2




) together; however some appli
ations of (R

1




)

may require an additional arrow � to the right (we put it within round bra
kets).

6.1 Superposition between (R

i




) and (R

j




)

�

i

Æ �; 


j

; (�) �

i

; � Æ 


j

; (�)

�

i

; �; 


j

; (�)

(R

i




)

�

�

�

�

�

�	

(R

j




)

�

�

�

�

�

�R

If i = j, we 
an rewrite both members to �

i

Æ� Æ


i

. Otherwise, ne
essarily � belongs

to T

0

and we 
an apply Lemma 6.1.
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6.2 Superpositions between (R

i




) and (R

�

)

CASE 1

�

i

e

; �

i

�

Æ �

i

; (�) �

i

Æ �

i

; (�)

-

(R

i




)

�

i

; �

i

; (�)

(R

�

)

�

�

�

�

�

�

�	

(R

i




)

�

�

�

�

�

�

�R

CASE 2

�

e

; �

�

Æ �

i

; 


i

; (�) �; �

i

Æ 


i

; (�)

�; �

i

; 


i

; (�)

(R

�

)

�

�

�

�

�

�	

(R

i




)

�

�

�

�

�

�R

�

e

; �

�

Æ �

i

Æ 


i

; (�)

(R

i




)

�

�

�

�

�

�R

(R

�

)

�

�

�

�

�

�	

CASE 3

�

i

; �

i

e

; �

i

�

Æ 
 �

i

Æ �

i

; 


�

i

; �

i

; 


(R

�

)

�

�

�

�

�

�	

(R

i




)

�

�

�

�

�

�R

�

i

Æ �

i

e

; �

i

�

Æ 


?

(R

i




)

(�

i

Æ �

i

e

) Æ �

i

�

; 


=

By Lemma 6.1, with �

0

= �

i

�

.
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6.3 Superpositions between (R

i




) and (R

"

)

CASE 1

�

i

Æ �

i

"

; �

i

m

; (�) �

i

Æ �

i

; (�)

-

(R

i




)

�

i

; �

i

; (�)

(R

"

)

�

�

�

�

�

�

�	

(R

i




)

�

�

�

�

�

�

�R

CASE 2

� Æ �

i

"

; �

i

m

; 


i

; (�) �; �

i

Æ 


i

; (�)

�; �

i

; 


i

; (�)

(R

"

)

�

�

�

�

�

�	

(R

i




)

�

�

�

�

�

�R

� Æ �

i

"

; �

i

m

Æ 


i

; (�)

?

(R

i




)

�; �

i

"

Æ (�

i

m

Æ 


i

); (�)

=

By Lemma 6.1, with �

0

= �

i

"

.

CASE 3

�

i

; �

i

Æ 


"

; 


m

�

i

Æ �

i

; 


�

i

; �

i

; 


(R

"

)

�

�

�

�

�

�	

(R

i




)

�

�

�

�

�

�R

�

i

Æ �

i

Æ 


"

; 


m

(R

i




)

�

�

�

�

�

�R

(R

"

)

�

�

�

�

�

�	
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6.4 Superposition between (R

�

) and itself

�

e

; �

�

Æ �; 
 �; �

e

; �

�

Æ 


�; �; 


(R

�

)

�

�

�

�

�

�	

(R

�

)

�

�

�

�

�

�R

�

e

; (�

�

Æ �

e

) Æ �

�

; 


=

�

e

; �

�

Æ �

e

; �

�

Æ 


?

(R

�

)

By Lemma 6.1, with �

0

= �

�

.

6.5 Superpositions between (R

�

) and (R

"

)

CASE 1

�

e

; �

�

Æ � � Æ �

"

; �

m

�; �

(R

�

)

�

�

�

�

�

�	

(R

"

)

�

�

�

�

�

�R

�

e

; (�

�

Æ �

"

) Æ �

m

=

�

e

Æ (�

�

Æ �

"

); �

m

=

By Lemma 6.1, with �

0

= �

�

Æ �

"

.

CASE 2
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�

e

; �

�

Æ �; 
 �; � Æ 


"

; 


m

�; �; 


(R

�

)

�

�

�

�

�

�	

(R

"

)

�

�

�

�

�

�R

�

e

; �

�

Æ � Æ 


"

; 


m

(R

"

)

�

�

�

�

�

�R

(R

�

)

�

�

�

�

�

�	

CASE 3

�; �

e

; �

�

Æ 
 � Æ �

"

; �

m

; 


�; �; 


(R

�

)

�

�

�

�

�

�	

(R

"

)

�

�

�

�

�

�R

�; �

"

Æ (�

m

)

e

; (�

m

)

�

Æ 


=

� Æ �

"

; (�

m

)

e

; (�

m

)

�

Æ 


?

(R

�

)

In �rst member we use the fa
t that the following diagram is 
ommutative

-

(�

m

)

e

-

�

?

�

"

6

(�

m

)

�

�

m

�

�

�

�

�

�

�

�*

Thus, reasoning as usual (by uniqueness of fa
torizations - up to a renaming), we 
an

state that �

e

= �

"

Æ (�

m

)

e

and �

�

= (�

m

)

�

. We 
an apply Lemma 6.1, with �

0

= �

"

.
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6.6 Superposition between (R

"

) and itself

� Æ �

"

; �

m

; 
 �; � Æ 


"

; 


m

�; �; 


(R

"

)

�

�

�

�

�

�	

(R

"

)

�

�

�

�

�

�R

� Æ �

"

; �

m

Æ 


"

; 


m

?

(R

"

)

�; �

"

Æ (�

m

Æ 


"

); 


m

=

By Lemma 6.1, with �

0

= �

"

.

We 
an 
on
lude:

Theorem 6.2 R

0

is lo
ally 
on
uent.

It remains to show the termination of R

0

. This result is a 
onsequen
e of Theo-

rem 9.8, however here we give a dire
t proof, whi
h uses less ma
hinery. We need a


omplexity measure for paths whi
h de
reases with appli
ation of our rules. At this

aim, we de�ne:

�(�

i

) =

�

0 if �

i

2 E

i

1 otherwise

"(�

i

) =

�

0 if �

i

2M

i

1 otherwise

Let K be the path �

1

; : : : ; �

n

. We de�ne:

�(K) = h�(�

1

); : : : ; �(�

n

)i "(K) = h"(�

n

); : : : ; "(�

1

)i

(noti
e that �(K) = �(K

0

) and "(K) = "(K

0

) hold in 
ase K and K

0

are alphabeti


variants ea
h other).

Finally, we introdu
e the following order relation � between paths K;L:

� K � L if and only if either (i) or (ii) hold:

(i) jKj > jLj (where jKj denotes the length of K);

(ii) jKj = jLj and h�(K); "(K)i >

l

h�(L); "(L)i

(where >

l

denotes the lexi
ographi
 order between n-ple of integers).

It is a standard fa
t that
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Lemma 6.3 � is a terminating transitive relation.

Now we prove that � is a stable relation.

Lemma 6.4 K � K

0

implies L;K;R � L;K

0

; R (for all L;R).

Proof. If jKj > jK

0

j we immediately have L;K;R � L;K

0

; R. Suppose now jKj =

jK

0

j; we have to show that

h�(L); �(K); �(R); "(R); "(K); "(L)i >

l

h�(L); �(K

0

); �(R); "(R); "(K

0

); "(L)i:

This follows from the fa
t that either �(K) >

l

�(K

0

) or �(K) = �(K

0

) and "(K) >

l

"(K

0

). a

Lemma 6.5 Let L)

R

0

L

0

, then L � L

0

.

Proof. Sin
e � is stable, it is suÆ
ient to analyze the following three 
ases.

(1) �

i

; �

i

)

(R

i




)

�

i

Æ �

i

.

We have j�

i

; �

i

j > j�

i

Æ �

i

j, hen
e �

i

; �

i

� �

i

Æ �

i

.

(2) �; � )

(R

�

)

�

e

; �

�

Æ �.

The two paths have the same length, moreover �(�) = 1 and �(�

e

) = 0 (otherwise

there is no way to apply (R

�

)). This implies that

h�(�); �(�); "(�); "(�)i >

l

h�(�

e

); �(�

�

Æ �); "(�

�

Æ �); "(�

e

)i

from whi
h �; � � �

e

; �

�

Æ � follows.

(3) �; � )

(R

"

)

� Æ �

"

; �

m

.

Clearly j�; �j = j� Æ �

"

; �

m

j. Moreover:

- �(�) � �(� Æ �

"

).

In fa
t, if �(�) = 0, then � 2 E

i

(i = 1; 2), whi
h implies � Æ �

"

2 E

i

, hen
e

�(� Æ �

"

) = 0.

- �(�) � �(�

m

).

Suppose that �(�

m

) = 1, that is �

m

= (�

m

)

e

Æ�, with � di�erent from identity. Sin
e

� = (�

"

Æ (�

m

)

e

) Æ� and �

"

Æ (�

m

)

e

belongs to E

k

, � is also the �-
omponent of �, and

this means that �(�) = 1.

- "(�) > "(�

m

).

Otherwise we 
annot apply (R

"

). We get:

h�(�); �(�); "(�); "(�)i >

l

h�(� Æ �

"

); �(�

m

); "(�

m

); "(� Æ �

"

)i

and this proves the lemma. a
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Sin
e � is a terminating transitive relation, the following theorem is proved.

Theorem 6.6 R

0

is terminating.

This 
on
ludes the proof of Theorem 5.1.
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7 The system R

+

Proving dire
tly lo
al 
on
uen
e of R leads to unne
essary 
ompli
ations, this is why

we prefer to introdu
e another system (whi
h we 
all R

+

) and prove lo
al 
on
uen
e

of the latter. In Se
tion 9 we shall prove termination of both R and R

+

and then

we shall make a more pre
ise 
omparison between R and R

+

: from this 
omparison,


anoni
ity of R follows immediately.

In order to introdu
e R

+

we �rst 
onsider slight modi�
ations of rules (R

�

) and

(R

i

p

).

Rule (R

�

) is enlarged as follows:

(R

�

)

+

h�; �i; 
 ) h�

e

; �i; (�

�

� 1) Æ 


(noti
e that in 
ase ve
tor � is empty, we get ordinary (R

�

)-rule).

Rules (R

i

p

) are on the other hand restri
ted so that only 1-
omponent arrows are

`moved to the right' (let us 
all (R

i

p

)

+

the rules obtained by this restri
tion). In


on
lusion, we let R

+

be the rewriting system of Table 3.

It should be noti
ed that (as for R) also in R

+

alphabeti
 variants of the above

rules are available as rules. For instan
e, rule (R

i

p

)

+

has the following alphabeti


variant

Y

h


i

1

;d

i

;


i

2

i

�! Y

1

�X � Y

2

h�

j

1

;�

X

;�

j

2

i

�! Z

1

�X � Z

2

�

i

�! U

+

Y

h


i

1

;d

i

;d

i

"

;


i

2

i

�! Y

1

�X � Y

0

� Y

2

h�Æ�

j

1

;�

Y

0

;�Æ�

j

2

i

�! Z

1

� Y

0

� Z

2

(1

Z

1

�d

i

m

�1

Z

2

)Æ�

i

�! U

(where a further arrow must be inserted to the right in 
ase i = 1, where Y

0

is the


odomain of d

i

"

and where � is the proje
tion Y

1

�X�Y

0

�Y

2

�! Y

1

�X�Y

2

). Other

alphabeti
 variants are possible, e.g. by permuting the 
omponents of h


i

1

; d

i

; d

i

"

; 


i

2

i.

Su
h alphabeti
 variants will be sometimes used during 
on
uen
e proofs.

In the remaining part of this se
tion we 
olle
t useful te
hni
al fa
ts. We �rst

analyze the relationship between old and new �-extra
tion rules.

24

Noti
e that all results in this Se
tion depends only on the de�nition of left extensions of weak

fa
torization systems. As su
h, they 
an be used to handle pushouts (for faithful and bije
tive

on obje
ts fun
tors) in Cat, the 
ategory of all small 
ategories. Re
alling that monoids are just

one-obje
t 
ategories, Theorem 5.1 spe
ializes to a little result in pure string-rewriting.
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(R

1




) �

1

; �

1

; 
 ) �

1

Æ �

1

; 


(R

2




) �

2

; �

2

) �

2

Æ �

2

(R

"

) �; � ) � Æ �

"

; �

m

(R

�

)

+

h�; �i; 
 ) h�

e

; �i; (�

�

� 1) Æ 


(R

1

p

)

+

h


1

; d

1

i; h�; �

X

i; �

1

; � ) h


1

; d

1

; d

1

"

i; �� 1; (1 � d

1

m

) Æ �

1

; �

where d

1

62 E

0

(R

2

p

)

+

h


2

; d

2

i; h�; �

X

i; �

2

) h


2

; d

2

; d

2

"

i; �� 1; (1 � d

2

m

) Æ �

2

where d

2

62 E

0

Table 3: The system R

+

Lemma 7.1 If K ) K

0

by a single (R

�

)

+

-step, then there is K

00

su
h that K

0

rewrites to K

00

by (at most) 2 (R

�

)

+

-rewrite steps and K rewrites to K

00

by a single

(R

�

)-rewrite step.

Proof. We have the following three (R

�

)

+

-rewrite steps:

h�; �i; 
 ) h�

e

; �i; (�

�

� 1) Æ 
 ) h�

e

; �

e

i; (�

�

� �

�

) Æ 
 )

) h�

e

; �

e

i

e

; h�

e

; �

e

i

�

Æ (�

�

� �

�

) Æ 


We need only to show that h�

e

; �

e

i

e

= h�; �i

e

and h�

e

; �

e

i

�

Æ (�

�

� �

�

) = h�; �i

�

.

Let us 
onsider the fa
torization

Y Y

0

-

h�; �i

e

Z

1

� Z

2

h�; �i

�

�

�

�R

h�; �i

�

�

�

�

�	

and let us put h�; �i

�

= h�; �i. We have (h�; �i

e

Æ �

"

) Æ �

�

= �

e

Æ �

�

, hen
e (by

uniqueness of fa
torization)

h�; �i

e

Æ �

"

= �

e

and �

�

= �

�

and similarly

h�; �i

e

Æ �

"

= �

e

and �

�

= �

�

:
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Thus

(�) h�; �i = h�; �i

e

Æ (h�

"

; �

"

i Æ (�

�

� �

�

)):

The arrow h�

"

; �

"

i Æ (�

�

� �

�

) belongs to M

0

as it is equal to h�; �i = h�; �i

�

; so if

we fa
torize h�

"

; �

"

i as " Æ � and then � Æ (�

�

� �

�

) as "

0

Æ �

0

, we get that " Æ "

0

is

the identity (being equal to the �rst 
omponent of the "=�-fa
torization of an arrow

in M

0

, namely h�

"

; �

"

i Æ (�

�

� �

�

)). This 
an happen only if " itself (whi
h is a

proje
tion) is in fa
t identity (up to a renaming); we thus established that h�

"

; �

"

i

belongs toM

0

- whi
h means that

(�)

0

h�

"

; �

"

i is a diagonal.

(this is 
lear as �

"

; �

"

are both proje
tions). From h�; �i

e

Æ�

"

= �

e

and h�; �i

e

Æ�

"

= �

e

,

we get

h�

e

; �

e

i = h�; �i

e

Æ h�

"

; �

"

i

As �rst 
omponent is in E

i

and se
ond 
omponent is inM

0

, we get by uniqueness of

fa
torization,

h�

e

; �

e

i

e

= h�; �i

e

and

(�)

00

h�

e

; �

e

i

�

= h�

"

; �

"

i

whi
h gives the 
laim (
ombined with h�; �i

�

= h�

"

; �

"

i Æ (�

�

��

�

) 
oming from (�)).

a

The above Lemma guarantees that there is no need in the lo
al 
on
uen
e proof to


ompute superpositions between rule (R

�

)

+

and other rules ((R

�

)

+

itself in
luded): it

is suÆ
ient to 
ompute superpositions between (R

�

) and other rules.

25

Using (R

�

)

+

instead of (R

�

) allows us to apply a less restri
tive rule during 
on
uen
e proofs; this

makes some passages shorter (the only little pri
e we pay for that is that we shall

need to prove termination of (R

�

)

+

too). Next Corollary will be used in Se
tion 9 and

is a slightly more a

urate reformulation of what 
omes from the proof of Lemma 7.1

(re
all that, a

ording to (�)

0

and (�)

00

the third step was in fa
t a (Rdi)

�

-step, where

(Rdi)

�

is the diagonalization rule we met in Se
tion 5):

Lemma 7.2 Let (R

�

)

+1

be the following spe
ial 
ase of rule (R

�

)

+

:

(R

�

)

+1

ha; �i; � ) ha

e

; �i; (a

�

� 1) Æ �:

If K ) K

0

by a single (R

�

) or (R

�

)

+

-rewrite step, then K rewrites to K

0

by using a

�nite number of (R

�

)

+1

-rewrite steps followed by a single (Rdi)

�

-rewrite step.

25

If K ) K

0

and K ) K

00

give rise to the 
riti
al pair (K

0

; K

00

) and, say, K ) K

0

is a (R

�

)

+

-step,

we 
an �nd K

0

su
h that K

0

)

�

R

+

K

0

and the pair (K

0

; K

00

) is a 
riti
al pair generated by rule (R

�

)

(instead of rule (R

�

)

+

).
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In words: the e=� fa
torization of ha

1

; : : : ; a

n

i is obtained by taking the 
omponen-

twise e=� fa
torizations and then by applying a diagonalization step. The following

fa
t is very useful:

Lemma 7.3 If he

i

1

; : : : ; e

i

n

i 2 E

i

, the e

i

j

are pairwise distin
t.

Proof. As E

i

is 
losed under 
omposition with proje
tions, all e

i

j

are in E

i

. Let

he

i

j

1

; : : : ; e

i

j

m

i be a list of distin
t arrows 
ontaining exa
tly all the arrows among

e

i

1

; : : : ; e

i

n

. By the previous Lemma, he

i

j

1

; : : : ; e

i

j

m

i 2 E

i

. A

ording to the de�nition

of he

i

j

1

; : : : ; e

i

j

m

i, there is a diagonal Æ su
h that

he

i

j

1

; : : : ; e

i

j

m

i Æ Æ = he

i

1

; : : : ; e

i

n

i:

As Æ 2 M

0

, by uniqueness of e=�-fa
torizations, Æ is a renaming (thus showing the


laim). a

Corollary 7.4 �

i

2 E

i

i� the 
omponents of �

i

are pairwise distin
t and all belong

to E

i

.

A 
onsequen
e of the above results is that e=�-fa
torizations are stable under


ertain pullba
ks, in the sense of the following:

Lemma 7.5 If � : Y

1

�! Y

2

has fa
torization �

e

Æ�

�

, then for every Z, �� 1

Z

has

fa
torization (�

e

� 1

Z

) Æ (�

�

� 1

Z

).

Proof. It is suÆ
ient to show that the 
omponents of �

Y

1

Æ�

e


annot be equal to the


omponents of �

Z

. This is 
lear, otherwise we would have in our theories provable

equations of the kind t = x

i

, where t is a term not 
ontaining the variable x

i

: this


annot be, otherwise (after making term t a ground term by a substitution, if you

like) we would obtain degeneration, i.e. that all terms are provably equal. a

We now show that also rule (R

i

p

) 
an be roughly a
hieved by �nitely many (R

i

p

)

+

-

rewrite steps. Let us use the notation K & L in order to express that there is K

0

su
h that K )

�

R

+

K

0

and K

0

,

�

R

0

L.

Lemma 7.6 Let L be the path

L = Y

h


i

;Æ

i

i

�! Y

1

� Z

h�;�

Z

i

�! Y

2

� Z

�

i

�! U

(�)

�! V

(where the arrow � is missed in 
ase i = 2) and let R;R

0

be the following two paths:

R = h


i

; Æ

i

; Æ

i

"

i; � � 1

Y

0

; (1

Y

2

� Æ

i

m

) Æ �

i

; (�)

R

0

= h


i

; Æ

i

; 1

Y

i; �� 1

Y

; (1

Y

2

� Æ

i

) Æ �

i

; (�)

(where we supposed that Y

0

is the 
odomain of Æ

"

). We have:
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(i) R,

�

R

0

R

0

;

(ii) if Æ

i

2 T

0

, then L,

�

R

0

R;

(iii) in the general 
ase, L& R (and 
onsequently L& R

0

).

Proof. (i) was proved at the end of Se
tion 5 (it was a
tually used as simpli�
ation

step during 
ompletion). (ii) is easy, be
ause we 
an move to the left (1 � Æ

i

m

) in R

by ,

�

R

0

-equivalen
e:

h


i

; Æ

i

; Æ

i

"

i; �� 1; (1� Æ

i

m

) Æ �

i

; (�) ,

�

R

0

h


i

; Æ

i

; Æ

i

i; �� 1; �

i

; (�),

�

R

0

L:

(iii) is proved by indu
tion on the number of 
omponents of Æ. If su
h number is

1, there is nothing to prove (be
ause either (R

i

p

)

+

or (ii) applies). So suppose it is

bigger than 1. If Æ 2 T

0

, we just proved a stronger 
laim; otherwise L and R (up to

an alphabeti
 variant) are

(1) Y

h
;Æ;di

�! Y

1

� Z �X

h�;�

Z

;�

X

i

�! Y

2

� Z �X

�

�! U

(�)

�! V

and

(2) Y

h
;Æ;d;hÆ;di

"

i

�! Y

1

� Z �X � Y

0

��1

Y

0

�! Y

2

� Y

0

(1

Y

2

�hÆ;di

m

)Æ�

�! U

(�)

�! V

respe
tively (with d 62 T

0

). To the former, we 
an apply a (R

i

p

)

+

-rewrite step thus

getting

(3) Y

h
;Æ;d;d

"

i

�! Y

1

� Z �X � Y

00

0

h�;�

Z

i�1

Y

00

0

�! Y

2

� Z � Y

00

0

(1

Y

2

�1

Z

�d

m

)Æ�

�! U

(�)

�! V

(where we 
alled Y

00

0

the 
odomain of d

"

). By indu
tion hypothesis, there is path

K

00

su
h that (3) )

�

R

+

K

00

and K

00

,

�

R

0

(4), where (4) is the path (let Y

0

0

be the


odomain of Æ

"

):

(4) Y

h
;Æ;d;Æ

"

;d

"

i

�! Y

1

�Z�X�Y

0

0

�Y

00

0

��1

Y

0

0

�1

Y

00

0

�! Y

2

�Y

0

0

�Y

00

0

(1

Y

2

�Æ

m

�d

m

)Æ�

�! U

(�)

�! V

As h
; Æ; d; Æ

"

; d

"

i is equal to h
; Æ; d; 1

Y

iÆ (1

Y

1

�1

Z

�1

X

�hÆ

"

; d

"

i), we 
an move right

1

Y

1

� 1

Z

� hÆ

"

; d

"

i by ,

�

R

0

-equivalen
e, thus getting the path

(5) Y

h
;Æ;d;1

Y

i

�! Y

1

� Z �X � Y

��1

Y

�! Y

2

� Y

(1

Y

2

�hÆ;di)Æ�

�! U

(�)

�! V

whi
h we know from (i) it is ,

�

R

0

-equivalent to (2). In 
on
lusion, we have

(1))

R

+ (3))

�

R

+

K

00

,

�

R

0

(4),

�

R

0

(5),

�

R

0

(2)

thus showing the 
laim a
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We need a �nal Lemma for next Se
tion:

Lemma 7.7 We have R

1

& R

2

, where R

1

; R

2

are the paths

R

1

= Y � Z

1

h�

i

1

;�

i

2

i�1

�! Y

1

� Y

2

� Z

1

�

Y

1

��

j

�! Y

1

� Z

2




i

�!W

(�)

�! V

R

2

= Y � Z

1

1��

j

�! Y � Z

2

(�

i

1

�1)Æ


i

�! W

(�)

�! V

(� is missed in 
ase i = 2).

Proof. Applying (an alphabeti
 variant of) Lemma 7.6 (iii), we have that

R

1

= h�

Y

Æ �

i

1

; �

Y

Æ �

i

2

; �

Z

1

i; h�

Y

1

; �

Z

1

Æ �

j

i; 


i

; (�)

&

h1

Y�Z

1

; �

Y

Æ �

i

1

; �

Y

Æ �

i

2

; �

Z

1

i; h1

Y �Z

1

� (�

Z

1

Æ �

j

)i; ((�

Y

Æ �

i

1

)� 1

Z

2

) Æ 


i

; (�)

=

h�

Y

; �

Z

1

; �

Y

Æ �

i

1

; �

Y

Æ �

i

2

; �

Z

1

i;

h1

Y�Z

1

� (�

Z

1

Æ �

j

)i; h�

Y

; �

Z

2

i Æ (�

i

1

� 1

Z

2

) Æ 


i

; (�)

,

�

R

0

(see Figure 1)

h�

Y

; �

Z

1

; �

Y

Æ �

i

1

; �

Y

Æ �

i

2

; �

Z

1

i; h�

Y

; �

2

Z

1

i Æ (1

Y

� �

j

); (�

i

1

� 1

Z

2

) Æ 


i

; (�)

,

�

R

0

h�

Y

; �

Z

1

; �

Y

Æ �

i

1

; �

Y

Æ �

i

2

; �

Z

1

i Æ h�

Y

; �

2

Z

1

i; 1

Y

� �

j

; (�

i

1

� 1

Z

2

) Æ 


i

; (�)

=

h�

Y

; �

Z

1

i; 1

Y

� �

j

; (�

i

1

� 1

Z

2

) Æ 


i

; (�)

=

1

Y�Z

1

; 1

Y

� �

j

; (�

i

1

� 1

Z

2

) Æ 


i

; (�)

,

�

R

0

1

Y

� �

j

; (�

i

1

� 1

Z

2

) Æ 


i

; (�) = R

2

as wanted. a

8 Lo
al 
on
uen
e, II

In this se
tion we prove that R

+

is lo
ally 
on
uent. In order to show 
on
uen
e of

a pair of paths (R

1

; R

2

), we shall use the following s
hema: we �nd L

1

; L

2

su
h that

R

1

& L

1

and R

2

& L

2

and L

1

,

�

R

0

L

2

. Canoni
ity of R

0

(whi
h was proved in

Se
tion 6) guarantees that in su
h a 
ondition K

1

;K

2

are joinable.

Throughout this se
tion we shall mention arrows 
; d; �; �; �; � whose domains

and 
odomains are �xed as follows:
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Y � Z

1

Y

1

� Z

2

-

1

Y

��

j

Y � Z

1

� Y

1

� Y

2

� Z

1

Y � Z

1

� Z

2

-

1

Y�Z

1

�(�

Z

1

Æ�

j

)

?

h�

Y

;�

2

Z

1

i

?

h�

Y

;�

Z

2

i

Figure 1: Commutative diagram

Y

-

h
; di

Y

1

�X

-

h�; �

X

i

Y

2

�X

-

�

U

-

�

V T

-

�

We also assume that d fa
torizes in "=m-
omponents as follows

Y X

-

d

Y

0

d

"

�

�R

d

m

�

��

We �rst analyze some situations whi
h are very frequent during lo
al 
on
uen
e

proof.

Lemma 8.1 Let K

i

(i 2 f1; 2g) be the following path:

K

i

= h


i

; d

i

; d

i

"

i; �

j

� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)

(where � la
ks in 
ase i = 2). Then:

(i) The path K

0

i

= h


i

; d

i

i; (h�

j

; �

X

i Æ �

0

)

e

; (h�

j

; �

X

i Æ �

0

)

�

Æ �

i

; (�) is joinable with

K

i

in R

+

.

(ii) The path K

00

i

= h


i

; d

i

i; h�

j

; �

X

i Æ �

0

; �

i

; (�) is joinable with K

i

in R

+

.

Proof. (ii) is trivially redu
ed to (i) (just apply (R

�

) inK

00

i

to de
ompose h�

j

; �

X

iÆ�

0

).

To prove (i), we have to fa
torize the arrow h�

j

; �

X

i Æ �

0

in 
omponents e=�.

We �rst fa
torize h�

j

; �

X

i: by Lemmas 7.2, 7.3, su
h fa
torization is obtained by

�rst fa
torizing �

j

in e=� 
omponents and then diagonalizing with �

X

in 
ase �

X

appears among the 
omponents of �

j

e

. We have to distinguish whether �

X

is among

the 
omponents of �

j

e

or not.

Case 1 : �

X

is among the 
omponents of �

j

e

, hen
e �

j

has the following fa
toriza-

tion in e=�-
omponents:
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Y

1

�X Y

2

-

�

j

S �X

h��

j

; �

X

i

�

�

�

�R

�

j

�

�

�

�

��

Then:

h�

j

; �

X

i = h��

j

; �

X

; �

X

i Æ (�

j

�

� 1

X

) = h��

j

; �

X

i Æ [(1

S

��

X

) Æ (�

j

�

� 1

X

)℄

where X

�

X

�! X � X is a diagonal. We have two sub
ases, depending whether �

X

appears in the "-
omponent of (1

S

��

X

) Æ (�

j

�

� 1

X

) Æ �

0

or not.

Sub
ase 1.1 : let us assume that (1

S

� �

X

) Æ (�

j

�

� 1

X

) Æ �

0

has the following

fa
torization in T

0

S �X U

-

(1

S

��

X

)Æ(�

j

�

�1

X

)Æ�

0

S

0

�X

�

S

0

�1

X

H

H

H

H

H

H

H

Hj

�

�

�

�

�

�

�

�

�*

It follows that h�

j

; �

X

i Æ �

0

= h��

j

; �

X

i Æ (�

S

0

� 1

X

) Æ �; by the fa
t that h��

j

; �

X

i Æ

(�

S

0

� 1

X

) belongs to E

j

and by the uniqueness of de
omposition we have:

(h�

j

; �

X

i Æ �

0

)

e

= h��

j

; �

X

i Æ (�

S

0

� 1

X

) = h��

j

Æ �

S

0

; �

X

i

(h�

j

; �

X

i Æ �

0

)

�

= �

It follows that K

0

i

= h


i

; d

i

i; h��

j

Æ �

S

0

; �

X

i; � Æ �

i

; (�). We 
an apply Lemma 7.6(iii)

(in fa
t, if i = 1 the arrow � belongs to the path) and we obtain K

0

i

& L

1

, where

L

1

= h


i

; d

i

; 1

Y

i; (��

j

Æ �

S

0

)� 1

Y

; (1

S

0

� d

i

) Æ � Æ �

i

; (�)

Let us 
onsider K

i

. We �rst observe that �

j

� 1

Y

0


an be de
omposed in e=� 
om-

ponents as (�

j

e

� 1

Y

0

) Æ (�

j

�

� 1

Y

0

) by Lemma 7.5; therefore an appli
ation of (R

�

)

yields to

K

i

)

R

+ h


i

; d

i

; d

i

"

i; �

j

e

� 1

Y

0

; (�

j

�

� 1

Y

0

) Æ (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)

=

h


i

; d

i

; d

i

"

i; h� Æ ��

j

; �

X

; �

Y

0

i; (�

j

�

� 1

Y

0

) Æ (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)
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where Y

1

�X � Y

0

�

�! Y

1

�X. We 
an apply Lemma 7.6(iii) on hd

i

; d

i

"

i and we get:

K

i

&

h


i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; (1

S

� hd

i

; d

i

"

i) Æ (�

j

�

� 1

Y

0

) Æ (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)

=

h


i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

;

(1

S

� hd

i

; d

i

"

i) Æ (1

S

� 1

X

� d

i

m

) Æ (�

j

�

� 1

X

) Æ �

0

Æ �

i

; (�)

= (see Figure 2)

h


i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; (1

S

� d

i

) Æ (1

S

��

X

) Æ (�

j

�

� 1

X

) Æ �

0

Æ �

i

; (�)

=

h


i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; (1

S

� d

i

) Æ (�

S

0

� 1

X

) Æ � Æ �

i

; (�)

=

h


i

; d

i

; d

i

"

; 1

Y

i; (� � 1

Y

) Æ (��

j

� 1

Y

); (�

S

0

� 1

Y

) Æ (1

S

0

� d

i

) Æ � Æ �

i

; (�)

,

�

R

0

h


i

; d

i

; d

i

"

; 1

Y

i Æ (� � 1

Y

); (��

j

� 1

Y

) Æ (�

S

0

� 1

Y

); (1

S

0

� d

i

) Æ � Æ �

i

; (�)

=

h


i

; d

i

; 1

Y

i; (��

j

Æ �

S

0

)� 1

Y

; (1

S

0

� d

i

) Æ � Æ �

i

; (�)

whi
h 
oin
ides with L

1

, and this prove (i).

S �X S �X �X

-

1

S

��

X

S � Y S �X � Y

0
-

1

S

�hd

i

;d

i

"

i

?

1

S

�d

i

?

1

S

�1

X

�d

i

m

1

S

�hd

i

;d

i

i

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

Figure 2: Commutative diagram

Sub
ase 1.2 : now (1

S

� �

X

) Æ (�

j

�

� 1

X

) Æ �

0

has the following fa
torization in

T

0

:
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S �X U

-

(1

S

��

X

)Æ(�

j

�

�1

X

)Æ�

0

S

0

�

S

Æ�

S

0

H

H

H

H

H

H

H

Hj

�

�

�

�

�

�

�

�

�*

We 
onsequently have

(h�

j

; �

X

i Æ �

0

)

e

= h��

j

; �

X

i Æ �

S

Æ �

S

0

= ��

j

Æ �

S

0

(h�

j

; �

X

i Æ �

0

)

�

= �

In the present sub
ase we do not need manipulating K

0

i

; moreover by manipulating

K

i

as in the previous 
ase, we get

K

i

&

h


i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; (1

S

� d

i

) Æ (1

S

��

X

) Æ (�

j

�

� 1

X

) Æ �

0

Æ �

i

; (�)

=

h


i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; (1

S

� d

i

) Æ �

S

Æ �

S

0

Æ � Æ �

i

; (�)

=

h


i

; d

i

; d

i

"

; 1

Y

i; (� Æ ��

j

)� 1

Y

; �

S

Æ �

S

0

Æ � Æ �

i

; (�)

,

�

R

0

h


i

; d

i

; d

i

"

; 1

Y

i; ((� Æ ��

j

)� 1

Y

) Æ �

S

Æ �

S

0

; � Æ �

i

; (�)

=

h


i

; d

i

; d

i

"

; 1

Y

i; h�

Y

1

; �

X

i Æ ��

j

Æ �

S

0

; � Æ �

i

; (�)

,

�

R

0

h


i

; d

i

i; ��

j

Æ �

S

0

; � Æ �

i

; (�)

whi
h 
oin
ides with K

0

i

, and this prove (i).

Case 2 : suppose now that �

X

does not belong to �

j

e

, namely �

j

has the following

fa
torization in e=�-
omponents:

Y

1

�X Y

2

-

�

j

S

�

j

e

�

�

�

�R

�

j

�

�

�

�

��
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This implies that:

h�

j

; �

X

i

e

= h�

j

e

; �

X

i h�

j

; �

X

i

�

= �

j

�

� 1

X

We need to fa
torize (�

j

�

� 1

X

) Æ �

0

in T

0

: again, we have two sub
ases, depending

whether �

X

appears or not in the "-
omponent.

Sub
ase 2.1 : let (�

j

�

� 1

X

) Æ �

0

fa
torize as follows:

S �X U

-

(�

j

�

� 1

X

) Æ �

0

S

0

�X

�

S

0

� 1

X

�

�

�

�R

�

�

�

�

��

Reasoning as in Case 1, it follows that:

(h�

j

; �

X

i Æ �

0

)

e

= h�

j

e

Æ �

S

0

; �

X

i (h�

j

; �

X

i Æ �

0

)

�

= �

We have

K

0

i

= h


i

; d

i

i; h�

j

e

Æ �

S

0

; �

X

i; � Æ �

i

; (�)

&

h


i

; d

i

; 1

Y

i; (�

j

e

Æ �

S

0

)� 1

Y

; (1

S

0

� d

i

) Æ � Æ �

i

; (�) (L

0

1

)

The arrow �

j

� 1

Y

0

de
omposes in e=� 
omponents as (�

j

e

� 1

Y

0

) Æ (�

j

�

� 1

Y

0

) (see

Lemma 7.5); thus, by (R

�

), K

i

rewrites to

h


i

; d

i

; d

i

"

i; �

j

e

� 1

Y

0

; (�

j

�

� 1

Y

0

) Æ (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)

,

�

R

0

(by Lemma 7.6(i))

h


i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

"

) Æ (�

j

�

� 1

Y

0

) Æ (1

Y

2

� d

i

m

) Æ �

0

Æ �

i

; (�)

=

h


i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

"

) Æ (1

S

� d

i

m

) Æ (�

j

�

� 1

X

); �

0

Æ �

i

; (�)

,

�

R

0

h


i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

) Æ (�

j

�

� 1

X

) Æ �

0

Æ �

i

; (�)

=

h


i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

) Æ (�

S

0

� 1

X

) Æ � Æ �

i

; (�)

,

�

R

0

h


i

; d

i

; 1

Y

i; (�

j

e

� 1

Y

) Æ (�

S

0

� 1

Y

); (1

S

0

� d

i

) Æ � Æ �

i

; (�)
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whi
h 
oin
ides with L

0

1

, and this 
on
ludes Sub
ase 2.1.

Sub
ase 2.2.: let (�

j

�

� 1

X

) Æ �

0

fa
torize as follows:

S �X U

-

(�

j

�

� 1

X

) Æ �

0

S

0

�

S

Æ �

S

0

�

�

�

�R

�

�

�

�

��

We have

(h�

j

; �

X

i Æ �

0

)

e

= �

j

e

Æ �

S

0

(h�

j

; �

X

i Æ �

0

)

�

= �

Reasoning as in Sub
ase 2.1, we have

K

i

,

�

R

0

h


i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

) Æ (�

j

�

� 1

X

) Æ �

0

Æ �

i

; (�)

=

h


i

; d

i

; 1

Y

i; �

j

e

� 1

Y

; (1

S

� d

i

) Æ �

S

Æ �

S

0

Æ � Æ �

i

; (�)

,

�

R

0

h


i

; d

i

; 1

Y

i; h�

Y

1

; �

X

i Æ �

j

e

Æ �

S

0

; � Æ �

i

; (�)

,

�

R

0

h


i

; d

i

i; �

j

e

Æ �

S

0

; � Æ �

i

; (�)

whi
h 
oin
ides with K

0

i

. a

Lemma 8.2 Let K

j

(j 2 f1; 2g) be the following path:

K

j

= h


i

; d

i

; d

i

"

i; �

j

� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

0

; �

j

; (�)

(where � la
ks in 
ase j = 2). Then the path

K

000

i

= h


i

; d

i

i; h�

j

; �

X

i Æ �

0

Æ �

j

; (�)

is joinable with K

j

in R

+

.

Proof. Here we 
annot apply the produ
ts rule on K

000

i

, therefore we have to a
t on

K

j

; thus we have to de
ompose (1

Y

2

�d

i

m

) Æ�

0

in e=� 
omponents. Suppose that the

e=�-
omponents of d

i

m

are

Y

0

X

-

d

i

m

S

Æ

i

�

�R

�

�

��
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Then by Lemma 7.5:

(1

Y

2

� d

i

m

)

e

= 1

Y

2

� Æ

i

(1

Y

2

� d

i

m

)

�

= 1

Y

2

� �

We de
ompose (1

Y

2

� d

i

m

) Æ �

0

as follows:

Y

2

� Y

0

Y

2

�X

-

1

Y

2

�d

i

m

Y

2

� S

?

1

Y

2

�Æ

i

1

Y

2

��

�

�

�

�

�

�

�

�*

V

?

�

0

Y

0

2

� S

0

?

�

Y

0

2

��

S

0

-

�

Sin
e 1

Y

2

� Æ

i

belongs to E

i

, we 
an state that

((1

Y

2

� d

i

m

) Æ �

0

)

e

= (1

Y

2

� Æ

i

) Æ (�

Y

0

2

� �

S

0

) = �

Y

0

2

� (Æ

i

Æ �

S

0

)

((1

Y

2

� d

i

m

) Æ �

0

)

�

= �

By (R

�

), we have

K

j

)

R

+
h


i

; d

i

; d

i

"

i; �

j

� 1

Y

0

; �

Y

0

2

� (Æ

i

Æ �

S

0

); � Æ �

j

; (�)

47



Lemma 7.7 yields (by a &-step):

26

h


i

; d

i

; d

i

"

i; 1

Y

1

� 1

X

� (Æ

i

Æ �

S

0

); ((�

j

Æ �

Y

0

2

)� 1

S

0

) Æ � Æ �

j

; (�)

,

�

R

0

h


i

; d

i

; d

i

"

i; 1

Y

1

� 1

X

� Æ

i

; (1

Y

1

� 1

X

� �

S

0

) Æ ((�

j

Æ �

Y

0

2

)� 1

S

0

) Æ � Æ �

j

; (�)

,

�

R

0

h


i

; d

i

; d

i

"

Æ Æ

i

i; (�

j

� 1

S

) Æ (�

Y

0

2

� �

S

0

) Æ � Æ �

j

; (�)

=

h


i

; d

i

; d

i

"

Æ Æ

i

i; (�

j

� 1

S

) Æ (1

Y

2

� �) Æ �

0

Æ �

j

; (�)

=

h


i

; d

i

; d

i

"

Æ Æ

i

i; (1

Y

1

� 1

X

� �) Æ (�

j

� 1

X

) Æ �

0

Æ �

j

; (�)

,

�

R

0

h


i

; d

i

; d

i

"

Æ Æ

i

i Æ (1

Y

1

� 1

X

� �); (�

j

� 1

X

) Æ �

0

Æ �

j

; (�)

=

h


i

; d

i

; d

i

i; (�

j

� 1

X

) Æ �

0

Æ �

j

; (�)

,

�

R

0

h


i

; d

i

i; h�

j

; �

X

i Æ �

0

Æ �

j

; (�)

whi
h 
oin
ides with K

000

i

. a

Let us now prove lo
al 
on
uen
e of R

+

. To this aim, by Se
tion 6 results, it

suÆ
es to study the superpositions between the rule (R

i

p

)

+

and the other rules, itself

in
luded (see also the observation following the proof of Lemma 7.1).

8.1 Superpositions between (R

j

p

)

+

and (R

i




)

CASE 1

We have a path of four arrows �

1

; �

2

; �

3

; �

4

and we apply (R

i




) on �

1

; �

2

and (R

j

p

)

+

on

�

2

; �

3

; �

4

(
learly, if the rule applied is (R

1

p

)

+

, we have to add an arrow � to the path).

Let us �rst suppose i 6= j; in su
h a 
ase �

2

must belong to T

0

:

26

We have a proje
tion �

Y

0

2

: Y

2

�! Y

0

2

, hen
e �

j

must be a pair (of ve
tors), whose 
omponent

having 
odomain Y

0

2

is obviously �

j

Æ �

Y

0

2

.
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�

i

Æ h


0

; d

0

i; h�; �

X

i; �

j

; (�) �

i

; h


0

; d

0

; d

0

"

i; �� 1

Y

0

; (1

Y

2

� d

0

m

) Æ �

j

; (�)

�

i

; h


0

; d

0

i; h�; �

X

i; �

j

; (�)

(R

i




)

�

�

�

�

�

�

�

�

�	

(R

j

p

)

+

�

�

�

�

�

�

�

�

�R

In this 
ase the two members of the 
riti
al pair are,

�

R

0

-equivalent by Lemma 7.6(ii).

If i = j, then we have:

�

i

Æ h


i

; d

i

i; h�; �

X

i; �

i

; (�) �

i

; h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

�

i

; h


i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

i




)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

By applying Lemma 7.6(iii) to �rst member (where �

i

Æ h


i

; d

i

i = h�

i

Æ 


i

; �

i

Æ d

i

i) we

have a &-step to the path (let W be the domain of �

i

):

h�

i

Æ 


i

; �

i

Æ d

i

; 1

W

i; � � 1

W

; (1

Y

2

� �

i

Æ d

i

) Æ �

i

; (�) (L

1

)

By applying (R

i




) to the se
ond member, where �� 1

Y

0

is h� Æ�; �

Y

0

i (with Y

1

�X �

Y

0

�

�! Y

1

�X), we get

h�

i

Æ 


i

; �

i

Æ d

i

; �

i

Æ d

i

"

i; h� Æ �; �

Y

0

i; (1

Y

2

� d

i

m

) Æ �

i

; (�)

& Lemma 7.6(iii)

h�

i

Æ 


i

; �

i

Æ d

i

; �

i

Æ d

i

"

; 1

W

i; (� Æ �)� 1

W

; (1

Y

2

� �

i

Æ d

i

"

) Æ (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

h�

i

Æ 


i

; �

i

Æ d

i

; �

i

Æ d

i

"

; 1

W

i; (� � 1

W

) Æ (�� 1

W

); (1

Y

2

� �

i

Æ d

i

"

Æ d

i

m

) Æ �

i

; (�)

,

�

R

0

h�

i

Æ 


i

; �

i

Æ d

i

; �

i

Æ d

i

"

; 1

W

i Æ (� � 1

W

); � � 1

W

; (1

Y

2

� �

i

Æ d

i

) Æ �

i

; (�)

=

h�

i

Æ 


i

; �

i

Æ d

i

; 1

W

i; � � 1

W

; (1

Y

2

� �

i

Æ d

i

) Æ �

i

; (�)

whi
h 
oin
ides with (L

1

).
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For future referen
e let us mark the following fa
t we established during the above

proof:

27

Lemma 8.3 Paths

�

i

Æ h


i

; d

i

i; h�; �

X

i; �

i

; (�)

�

i

Æ h


i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

are joinable in R

+

.

Let us go on by examining other superpositions.

CASE 2

We have a path of three arrows �

1

; �

2

; �

3

, we apply (R

j




) on �

1

; �

2

and (R

i

p

)

+

on the

whole path. If i = j everything trivially 
ompose; otherwise �

1

must belong to T

0

.

Therefore we have:

h


0

; d

0

i Æ h�

j

; �

X

i; �

i

; (�) h


0

; d

0

; d

0

"

i; �

j

� 1

Y

0

; (1

Y

2

� d

0

m

) Æ �

i

; (�)

h


0

; d

0

i; h�

j

; �

X

i; �

i

; (�)

(R

j




)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

The two members are ,

�

R

0

-equivalent by Lemma7.6(ii).

CASE 3

We have a path of three arrows �

1

; �

2

; �

3

and we apply (R

j




) on �

2

; �

3

and (R

i

p

)

+

on

the whole path. Again everything 
ompose if i = j; otherwise �

3

must belong to

T

0

. Moreover as i = 1 or j = 1, we need a fourth arrow �

4

(�

4

, in its turn, must be

followed in a well-
oloured path

28

by a further arrow � in 
ase �

4

belongs to T

1

nT

0

).

We have:

27

The Lemma 
omes from the fa
t that the �rst step we applied to se
ond member was a (R

i




)-step.

28

Of 
ourse, only well-
oloured paths o

ur in our rewriting, so we are justi�ed in limiting ourselves

to su
h paths.

50



h


i

; d

i

i; h�

j

; �

X

i Æ �

0

; �; (�) h


i

; d

i

; d

i

"

i; �

j

� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

0

; �; (�)

h


i

; d

i

i; h�

j

; �

X

i; �

0

; �; (�)

(R

j




)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

If � 2 T

j

nT

0

, we 
ompose h�

j

; �

X

i Æ �

0

with � and then apply Lemma 8.2. If

� 2 T

i

nT

0

, we 
ompose (1

Y

2

� d

i

m

) Æ �

0

with � and the 
on
uen
e immediately

follows by Lemma 8.1(ii). If � 2 T

0

, we 
an in any 
ase apply one of the two previous

solutions (be
ause either i or j must be 2, hen
e la
k of � does not matter).

CASE 4

We have a path of four arrows �

1

; �

2

; �

3

; �

4

and we apply (R

j




) on �

3

; �

4

and (R

i

p

)

+

on

�

1

; �

2

; �

3

. Suppose j = i; that is:

h


i

; d

i

i; h�; �

X

i; �

i

Æ �

i

; (�) h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; �

i

; (�)

h


i

; d

i

i; h�; �

X

i; �

i

; �

i

; (�)

(R

i




)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

Then we 
an redu
e both �rst member (by (R

i

p

)

+

) and se
ond member (by (R

i




)

+

)

to the path

h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

Æ �

i

; (�):

Suppose that i 6= j; in this 
ase �

3

2 T

0

and we have

h


i

; d

i

i; h�; �

X

i; �

0

Æ �

j

; (�) h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

0

; �

j

; (�)

h


i

; d

i

i; h�; �

X

i; �

0

; �

j

; (�)

(R

j




)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R
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If � 2 T

i

, we 
an trivially apply (R

i




) to the se
ond member and then get �rst member

by ,

�

R

0

-steps. The relevant 
ase is when � 2 T

j

: here we 
an rewrite �rst member

by (R

j




) to h


i

; d

i

i; h�; �

X

i Æ �

0

Æ �

j

; (�) and then we apply Lemma 8.2.

8.2 Superpositions between (R

i

p

)

+

and (R

�

)

CASE 1

�

e

; �

�

Æ h


i

; d

i

i; h�; �

X

i; �

i

; (�) �; h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

�; h


i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

�

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

where � fa
torizes as follows

W Y

-

�

Z

�

e

�

�R

�

�

�

��

By applying Lemma 7.6(iii) to �rst member (where �

�

Æ h


i

; d

i

i = h�

�

Æ 


i

; �

�

Æ d

i

i),

we obtain, through a &-step:

�

e

; h�

�

Æ 


i

; �

�

Æ d

i

; 1

Z

i; �� 1

Z

; (1

Y

2

� �

�

Æ d

i

) Æ �

i

; (�) (L

1

)

Let us apply (R

�

) to the se
ond member; we get

�

e

; h�

�

Æ 


i

; �

�

Æ d

i

; �

�

Æ d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

�

e

; h�

�

Æ 


i

; �

�

Æ d

i

; �

�

Æ d

i

"

i; h� Æ �; �

Y

0

i; (1

Y

2

� d

i

m

) Æ �

i

; (�)

with Y

1

� X � Y

0

�

�! Y

1

� X. We 
an apply again Lemma 7.6(iii) and get, by a

&-step
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�

e

; h�

�

Æ 


i

; �

�

Æ d

i

; �

�

Æ d

i

"

; 1

Z

i; (� Æ �)� 1

Z

; (1

Y

2

� �

�

Æ d

i

"

) Æ (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

�

e

; h�

�

Æ 


i

; �

�

Æ d

i

; �

�

Æ d

i

"

; 1

Z

i; (� Æ �)� 1

Z

; (1

Y

2

� �

�

Æ d

i

) Æ �

i

; (�)

,

�

R

0

�

e

; h�

�

Æ 


i

; �

�

Æ d

i

; �

�

Æ d

i

"

; 1

Z

i Æ (� � 1

Z

); �� 1

Z

; (1

Y

2

� �

�

Æ d

i

) Æ �

i

; (�)

=

�

e

; h�

�

Æ 


i

; �

�

Æ d

i

; 1

Z

i; �� 1

Z

; (1

Y

2

� �

�

Æ d

i

) Æ �

i

; (�)

whi
h 
oin
ides with (L

1

).

CASE 2

�

i

; h�

0

; s

0

i Æ h�; �

X

i; �

i

; (�) h


i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

h


i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

�

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

where we suppose h


i

; d

i

i to have the following fa
torization in 
omponents e=�

Y Y

1

�X

-

h


i

; d

i

i

Z

�

i

�

�

�

�R

h�

0

; s

0

i

�

�

�

��

We apply (R

�

)

+

on the se
ond member to the 
omponent h


i

; d

i

i of h


i

; d

i

; d

i

"

i and

we obtain

h�

i

; d

i

"

i; (h�

0

; s

0

i � 1

Y

0

) Æ (�� 1

Y

0

); (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

h�

i

; d

i

"

i; (h�

0

; s

0

i Æ �)� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

,

�

R

0

h�

i

; 1

Y

i; (h�

0

; s

0

i Æ �)� 1

Y

; (1

Y

2

� d

i

"

) Æ (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

h�

i

; 1

Y

i; (h�

0

; s

0

i Æ �)� 1

Y

; (1

Y

2

� d

i

) Æ �

i

; (�) (L

2

)
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We need to fa
torize s

0

in 
omponents "=� in T

0

.

Z

0

� Z

00

X

-

s

0

Z

00

�

Z

00

�

�

�

�R

�

�

�

�

��

where Z

0

� Z

00

= Z. This implies that �

i

has the form h�

i

1

; �

i

2

i, where Y

�

i

1

�! Z

0

and

Y

�

i

2

�! Z

00

. By applying (R

�

)

+

on the �rst member to the arrow h�

0

; s

0

i Æ h�; �

X

i =

hh�

0

; s

0

i Æ �; s

0

i, in order to de
ompose s

0

, we obtain:

h�

i

1

; �

i

2

i; hh�

0

; s

0

i Æ �; �

Z

00

i; (1

Y

2

� �) Æ �

i

; (�)

whi
h, by Lemma 7.6(iii), be
omes (through a &-step)

h�

i

1

; �

i

2

; 1

Y

i; (h�

0

; s

0

i Æ �) � 1

Y

; (1

Y

2

� �

i

2

) Æ (1

Y

2

� �) Æ �

i

; (�)

=

h�

i

; 1

Y

i; (h�

0

; s

0

i Æ �)� 1

Y

; (1

Y

2

� �

i

2

Æ �) Æ �

i

; (�) (L

1

)

Sin
e �

i

2

Æ � = �

i

Æ �

Z

00

Æ � = �

i

Æ s

0

= d

i

, we 
an 
on
lude that (L

1

) 
oin
ides with

(L

2

).

CASE 3

h


i

; d

i

i; h�; �

X

i

e

; h�; �

X

i

�

Æ �

i

; (�) h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

h


i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

�

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

Con
uen
e is an immediate appli
ation of Lemma 8.1(i) (taking as �

0

the identity).

CASE 4
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h


i

; d

i

i; h�; �

X

i; �

i

e

; �

i

�

Æ � h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; �

h


i

; d

i

i; h�; �

X

i; �

i

; �

(R

�

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

It suÆ
es to apply (R

i

p

)

+

to �rst member and the 
on
uen
e immediately follows by

Lemma 6.1 (with �

0

= �

i

�

).

8.3 Superpositions between (R

i

p

)

+

and (R

"

)

CASE 1

� Æ "; h�


i

;

�

d

i

i; h�; �

X

i; �

i

; (�) �; h


i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

�; h


i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

"

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

where we suppose h


i

; d

i

i to have the following fa
torization in "=m-
omponents

Y Y

1

�X

-

h


i

; d

i

i

~

Y

"

�

�

�R

h�


i

;

�

d

i

i

�

�

��

Let us suppose that

�

d

i

has the following "=m-fa
torization

~

Y X

-

�

d

i

~

Y

0

�

d

i

"

�

�

�R

�

d

i

m

�

�

��
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Then, by the uniqueness of de
ompositions, sin
e " Æ

�

d

i

"

Æ

�

d

i

m

= d

i

, we have:

" Æ

�

d

i

"

= d

i

"

�

d

i

m

= d

i

m

~

Y

0

= Y

0

We apply (R

i

p

)

+

to the �rst member and we obtain:

� Æ "; h�


i

;

�

d

i

;

�

d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

,

�

R

0

�; " Æ h�


i

;

�

d

i

;

�

d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

�; h" Æ �


i

; " Æ

�

d

i

; " Æ

�

d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

�; h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

whi
h 
oin
ides with the se
ond member.

CASE 2

h


i

; d

i

i Æ "; h��; hi; �

i

; (�) h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

h


i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

"

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

where we have fa
torized h�; �

X

i in 
omponents "=m as follows

Y

1

�X Y

2

�X

-

h�; �

X

i

Z

"

�

�

�R

h��; hi

�

�

��

On the other hand, let h = h

"

Æ h

m

. Sin
e " Æ h

"

Æ h

m

= �

X

, by uniqueness of

fa
torizations, h

m

must 
oin
ide with 1

X

. Therefore h = h

"

is the proje
tion

29

on X,

hen
e (up to renaming) we have:

" = �

Y

0

� 1

X

Z = Y

0

1

�X

29

As " Æ h

"

= �

X

, we have that h

"


omposed on the left with a proje
tion is �

X

: it follows that h

"

itself must be the proje
tion into X (with domain Z).
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Thus, �rst member 
oin
ides with

h


i

Æ �

Y

0

; d

i

i; h��; �

X

i; �

i

; (�)

whi
h, by (R

i

p

)

+

, be
omes

h


i

Æ �

Y

0

; d

i

; d

i

"

i; ��� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

h


i

; d

i

; d

i

"

i Æ ("� 1

Y

0

); ��� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

,

�

R

0

h


i

; d

i

; d

i

"

i; (" � 1

Y

0

) Æ (��� 1

Y

0

); (1

Y

2

� d

i

m

) Æ �

i

; (�)

=

h


i

; d

i

; d

i

"

i; " Æ ��� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

and, sin
e " Æ �� = �, the last path 
oin
ides with the se
ond member.

CASE 3

h


i

; d

i

i; h�; �

X

i Æ �

i

"

; �

i

m

; (�) h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

h


i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

"

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R

We have to fa
torize �

i

. Suppose that `X belongs to the 
odomain of �

i

"

', that is

Y

2

�X U

-

�

i

Y

0

2

�X

�

Y

0

2

� 1

X

�

�

�R

�

i

m

�

�

��

Then the �rst member 
oin
ides with

h


i

; d

i

i; h� Æ �

Y

0

2

; �

X

i; �

i

m

; (�)
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whi
h is rewritten by (R

i

p

)

+

as

h


i

; d

i

; d

i

"

i; (� Æ �

Y

0

2

)� 1

Y

0

; (1

Y

0

2

� d

i

m

) Æ �

i

m

; (�)

,

�

R

0

h


i

; d

i

; d

i

"

i; �� 1

Y

0

; (�

Y

0

2

� 1

Y

0

) Æ (1

Y

0

2

� d

i

m

) Æ �

i

m

; (�)

=

h


i

; d

i

; d

i

"

i; � � 1

Y

0

; (1

Y

2

� d

i

m

) Æ (�

Y

0

2

� 1

X

) Æ �

i

m

; (�)

=

h


i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

whi
h 
oin
ides with the se
ond member.

If `X does not belong to the 
odomain of �

i

"

', that is �

i

"

= �

Y

2

Æ �

Y

0

2

, then the se
ond

member 
oin
ides with

h


i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

Y

2

Æ �

Y

0

2

Æ �

i

m

; (�)

=

h


i

; d

i

; d

i

"

i; � � 1

Y

0

; �

Y

2

Æ �

Y

0

2

Æ �

i

m

; (�)

,

�

R

0

h


i

; d

i

; d

i

"

i; (� � 1

Y

0

) Æ �

Y

2

Æ �

Y

0

2

; �

i

m

; (�)

=

h


i

; d

i

; d

i

"

i; h�

Y

1

; �

X

i Æ � Æ �

Y

0

2

; �

i

m

; (�)

,

�

R

0

h


i

; d

i

; d

i

"

i Æ h�

Y

1

; �

X

i; � Æ �

Y

0

2

; �

i

m

; (�)

=

h


i

; d

i

i; � Æ �

Y

0

2

; �

i

m

; (�)

whi
h, by the fa
t that � Æ �

Y

0

2

is the same as h�; �

X

i Æ �

Y

2

Æ �

Y

0

2

, 
oin
ides with the

�rst member.

CASE 4

h


i

; d

i

i; h�; �

X

i; �

i

Æ �

"

; �

m

h


i

; d

i

; d

i

"

i; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; �

h


i

; d

i

i; h�; �

X

i; �

i

; �

(R

"

)

�

�

�

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�

�

�

�R
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It suÆ
es to apply (R

i

p

)

+

to �rst member and the 
on
uen
e immediately follows by

Lemma 6.1 (with �

0

= �

"

).

8.4 Superpositions between (R

i

p

)

+

and (R

j

p

)

+

CASE 1

Here we have three arrows �

1

; �

2

; �

3

and we apply both rules to the whole path; the


ase i 6= j is trivial (it implies that �

1

and �

3

belongs to T

0

, so that everything


ompose). Let us suppose i = j. Arrow �

2

(up to an alphabeti
 variant) must be of

the form h�; �

1

X

; �

2

X

i. We have in prin
iple two 
ases (to be treated in a very similar

way) depending on whether �

1

X

and �

2

X

are the same proje
tion or not.

SUBCASE 1.1

K

1

K

2

h


i

; d

i

i; h�; �

X

; �

X

i; �

i

; (�)

(R

i

p

)

+

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�R

where

Y

-

h


i

; d

i

i

Y

1

�X

-

h�; �

X

; �

X

i

Y

2

�X �X V

-

�

i

and Y

d

i

"

�! Y

0

d

i

m

�! X 
orresponds to the fa
torization "=m of d

i

. The two members

are:

K

1

= h


i

; d

i

; d

i

"

i ; h�; �

X

i � 1

Y

0

; (1

Y

2

� 1

X

� d

i

m

) Æ �

i

; (�)

= h


i

; d

i

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �; �

X

; �

Y

0

i ; (1

Y

2

� 1

X

� d

i

m

) Æ �

i

; (�)

K

2

= h


i

; d

i

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �; �

Y

0

; �

X

i ; (1

Y

2

� d

i

m

� 1

X

) Æ �

i

; (�)

By applying (R

i

p

)

+

on both members with respe
t to �

X

, we get the path

h


i

; d

i

; d

i

"

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �; �

1

Y

0

; �

2

Y

0

i ; (1

Y

2

� d

i

m

� d

i

m

) Æ �

i

; (�)

where �

1

Y

0

and �

2

Y

0

proje
t on the �rst and on the se
ond Y

0

respe
tively.

SUBCASE 1.2
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K

1

K

2

h


i

; d

i

; 


i

i; h�; �

1

X

; �

2

X

i; �

i

; (�)

(R

i

p

)

+

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�R

where

Y

-

h


i

; d

i

; 


i

i

Y

1

�X �X

-

h�; �

1

X

; �

2

X

i

Y

2

�X �X V

-

�

i

and Y

d

i

"

�! Y

0

d

i

m

�! X, Y




i

"

�! Y

00




i

m

�! X 
orrespond to the fa
torization "=m of d

i

; 


i

.

The two members are:

K

1

= h


i

; d

i

; 


i

; 


i

"

i ; h� Æ �; �

1

X

; �

Y

00

i ; (1

Y

2

� 1

X

� 


i

m

) Æ �

i

; (�)

K

2

= h


i

; d

i

; d

i

"

; 


i

i ; h� Æ �; �

Y

0

; �

2

X

i ; (1

Y

2

� d

i

m

� 1

X

) Æ �

i

; (�)

where � denotes in both 
ases the proje
tion from the 
orresponding domains onto

Y

1

� X � X. By applying (R

i

p

)

+

on both members with respe
t to the suitable

proje
tion on X, we get the same path, namely

h


i

; d

i

; d

i

"

; 


i

; 


i

"

i ; h� Æ �; �

Y

0

; �

Y

00

i ; (1

Y

2

� d

i

m

� 


i

m

) Æ �

i

; (�)

CASE 2

Here we have a four-arrows path, (R

i

p

)

+

is applied to the �rst three arrows and (R

j

p

)

+

to the last three. We have

K

1

K

2

h


i

; d

i

i; h�

j

; 


j

; �

X

i; h�

i

; �

1

X

i; �

j

; (�)

(R

i

p

)

+

�

�

�

�

�

�	

(R

j

p

)

+

�

�

�

�

�

�R

where

Y

-

h


i

; d

i

i

Y

1

�X

-

h�

j

; 


j

; �

X

i

Y

2

�X �X

-

h�

i

; �

1

X

i

U �X V

-

�

j

and Y

2

�X � X

�

1

X

�! X is the proje
tion on the �rst X.

30

We also assume that d

i

and 


j

have the following fa
torizations:

30

It 
annot be the proje
tion on se
ond X, otherwise the proviso for rule (R

j

p

)

+

is violated.
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Y X

-

d

i

Y

0

d

i

"

�

�

�R

d

i

m

�

�

��

Y

1

�X X

-




j

Z




j

"

�

�

�R




j

m

�

�

��

It follows that

K

1

= h


i

; d

i

; d

i

"

i ; h�

j

; 


j

i � 1

Y

0

; (1

Y

2

� 1

X

� d

i

m

) Æ h�

i

; �

1

X

i; �

j

; (�)

K

2

= h


i

; d

i

i; h�

j

; 


j

; �

X

; 


j

"

i ; �

i

� 1

Z

; (1

U

� 


j

m

) Æ �

j

; (�)

First member 
an be written as follows

h


i

; d

i

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �

j

; h�

Y

1

; �

X

i Æ 


j

; �

Y

0

i ; h(1

Y

2

� 1

X

� d

i

m

) Æ �

i

; �

X

i ; �

j

; (�)

We 
an apply (R

j

p

)

+

with respe
t to the proje
tion �

X

(we point out that X is the


odomain of h�

Y

1

; �

X

i Æ 


j

, whi
h fa
torizes, in "=m 
omponents, as (h�

Y

1

; �

X

i Æ 


j

"

) Æ




j

m

). This yields to

h


i

; d

i

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �

j

; h�

Y

1

; �

X

i Æ 


j

; �

Y

0

; h�

Y

1

; �

X

i Æ 


j

"

i ;

((1

Y

2

� 1

X

� d

i

m

) Æ �

i

)� 1

Z

; (1

U

� 


j

m

) Æ �

j

; (�)

(L

1

)

By applying (R

i

p

)

+

to se
ond member with respe
t to the proje
tion �

X

, we get

h


i

; d

i

; d

i

"

i ; hh�

Y

1

; �

X

i Æ �

j

; h�

Y

1

; �

X

i Æ 


j

; �

Y

0

; h�

Y

1

; �

X

i Æ 


j

"

i ;

(1

Y

2

� 1

X

� d

i

m

� 1

Z

) Æ (�

i

� 1

Z

) ; (1

U

� 


j

m

) Æ �

j

; (�) (L

2

)

Sin
e ((1

Y

2

� 1

X

� d

i

m

) Æ �

i

) � 1

Z


oin
ides with (1

Y

2

� 1

X

� d

i

m

� 1

Z

) Æ (�

i

� 1

Z

),

paths L

1

and L

2


oin
ide.

CASE 3

Here we have a �ve-arrows path, (R

i

p

)

+

is applied to the �rst three 
omponents and

(R

j

p

)

+

to the last three 
omponents. We distinguish the sub
ases i 6= j and i = j.

SUBCASE 3.1

The third arrow must belong to T

0

, hen
e we have

L

1

L

2

h�

i

; 


i

i; h�; �

X

i; h


0

; d

0

i; h�; �

X

i; �

j

; (�)

(R

i

p

)

+

�

�

�

�

�

�	

(R

j

p

)

+

�

�

�

�

�

�R
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where

W

-

h�

i

; 


i

i

W

1

�X

-

h�; �

X

i

W

2

�X

-

h


0

; d

0

i

Y

1

�X

-

h�; �

X

i

Y

2

�X U

-

�

j

Therefore L

1

and L

2

are as follows (let W

0

; Y

0

be the 
odomains of 


i

"

; d

0

"

):

L

1

= h�

i

; 


i

; 


i

"

i ; � � 1

W

0

; (1

W

2

� 


i

m

) Æ h


0

; d

0

i; h�; �

X

i; �

j

; (�)

L

2

= h�

i

; 


i

i; h�; �

X

i; h


0

; d

0

; d

0

"

i ; �� 1

Y

0

; (1

Y

2

� d

0

m

) Æ �

j

; (�)

Applying (R

i

p

)

+

to L

2

, one gets

h�

i

; 


i

; 


i

"

i ; � � 1

W

0

; (1

W

2

� 


i

m

) Æ h


0

; d

0

; d

0

"

i ; �� 1

Y

0

; (1

Y

2

� d

0

m

) Æ �

j

; (�)

By an ,

�

R

0

-step, we get

h�

i

; 


i

; 


i

"

i ; � � 1

W

0

; (1

W

2

� 


i

m

); h


0

; d

0

; d

0

"

i ; �� 1

Y

0

; (1

Y

2

� d

0

m

) Æ �

j

; (�)

whi
h is ,

�

R

0

-equivalent to L

1

by Lemma 7.6(ii).

SUBCASE 3.2

L

1

L

2

h�

i

; 


i

i; h�; �

X

i; h


i

; d

i

i; h�; �

X

i; �

i

; (�)

(R

i

p

)

+

�

�

�

�

�

�	

(R

i

p

)

+

�

�

�

�

�

�R

where

W

-

h�

i

; 


i

i

W

1

�X

-

h�; �

X

i

W

2

�X

-

h


i

; d

i

i

Y

1

�X

-

h�; �

X

i

Y

2

�X U

-

�

i

Therefore L

1

and L

2

are as follows (let W

0

; Y

0

be the 
odomains of 


i

"

; d

i

"

):

L

1

= h�

i

; 


i

; 


i

"

i ; � � 1

W

0

; (1

W

2

� 


i

m

) Æ h


i

; d

i

i; h�; �

X

i; �

i

; (�)

L

2

= h�

i

; 


i

i; h�; �

X

i; h


i

; d

i

; d

i

"

i ; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

Applying (R

i

p

)

+

, L

2

rewrites to

h�

i

; 


i

; 


i

"

i ; � � 1

W

0

; (1

W

2

� 


i

m

) Æ h


i

; d

i

; d

i

"

i ; �� 1

Y

0

; (1

Y

2

� d

i

m

) Æ �

i

; (�)

whi
h is 
on
uent with L

1

by Lemma 8.3 (take �

i

to be 1

W

2

� 


i

m

)).

We so 
ompleted the proof of the following:

Theorem 8.4 R

+

is lo
ally 
on
uent.
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9 Termination

In order to show termination of R and of R

+

, we shall asso
iate with our paths


ertain 
ommutative labelled trees. Su
h trees are represented as terms built up from

the 
ountable set of variables fx

i

g

i�1

by using four

31


onstru
tors f

i

(i 2 f0; 1g

2

) of

type TermMultiset �! Term.

R-trees (or, brie
y, trees) are indu
tively de�ned as follows:

� x

i

is an R-tree for every i � 1;

� if fT

1

; : : : ; T

n

g is a multiset of R-trees and i 2 f0; 1g

2

, then f

i

(T

1

; : : : ; T

n

) is an

R-tree.

As a next step, we introdu
e a relation > among our trees; we have T

1

> T

2

i� one

of the following two 
onditions is satis�ed:

� T

1

is f

i

(T

0

1

; : : : ; T

0

n

) and T

2

is f

j

(T

00

1

; : : : ; T

00

k

) and fT

0

1

; : : : ; T

0

n

g >

m

fT

00

1

; : : : ; T

00

k

g;

� T

1

is f

i

(T

0

1

; : : : ; T

0

n

) and T

2

is f

j

(T

0

1

; : : : ; T

0

n

) and i > j (in the lexi
ographi


sense).

Some 
omments are in order. First >

m

is the multiset extension of >; se
ondly the

de�nition is by indu
tion on the height h(T

1

) of the tree T

1

. It is easily seen that

T

1

> T

2

implies h(T

1

) � h(T

2

).

32

In the following, we use � for the re
exive 
losure

of >.

We have the following easy

Lemma 9.1 > is a transitive and terminating relation.

Proof. For transitivity, let us show that

T

1

> T

2

> T

3

implies T

1

> T

3

by indu
tion on h(T

1

) + h(T

2

) + h(T

3

). We have two 
ases:

(i) suppose that T

1

> T

2

holds by the �rst 
lause, so that T

1

is f

i

(T

0

1

; : : : ; T

0

n

), T

2

is f

j

(T

00

1

; : : : ; T

00

k

) and fT

0

1

; : : : ; T

0

n

g >

m

fT

00

1

; : : : ; T

00

k

g; T

1

> T

3

follows from the

fa
t that >

m

is transitive (as > is transitive on lower height trees by indu
tion

hypothesis);

(ii) suppose that T

1

> T

2

holds by the se
ond 
lause, so that T

1

is f

i

(T

0

1

; : : : ; T

0

n

),

T

2

is f

j

(T

0

1

; : : : ; T

0

n

) and i > j; if T

2

> T

3

holds by the �rst 
lause, then T

1

> T

3

holds by the same 
lause, if it holds by the se
ond 
lause, then T

1

> T

3

holds

by transitivity of lexi
ographi
 orders.

31

A
tually only three su
h 
onstru
tors will be really used (f

h0;1i

is useless).

32

h(T ) is obviously de�ned as follows: variables have height 1, f

i

(T

1

; : : : ; T

n

) has height 1 +

max(h(T

1

); : : : ; h(T

n

)).
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For termination, suppose we have a 
hain

T

1

> T

2

> � � � T

i

> � � �

We show that this 
annot be by indu
tion on h(T

1

). As >

m

is terminating (by

indu
tive hypothesis on >), �rst 
lause 
annot be used in�nitely many times; so

starting from a 
ertain T

k

on, only the se
ond 
lause applies, whi
h is absurd as su
h


lause 
an be 
onse
utively applied only at most 3 times. a

As our trees are represented as terms, it makes sense to speak about substitutions.

Substitutions are 
ompatible with > in the following sense:

Lemma 9.2 Let a su

ession fT

i

g

i�1

of trees be given and let T

0

, T

00

be su
h that

T

0

> T

00

; we then have T

0

(T

i

=x

i

) > T

00

(T

i

=x

i

).

Proof. Immediate. a

Let us now turn to our paths. First, we need a de�nition. For an arrow �

i

, let us

put

e(�

i

) =

�

0 if �

i

2 E

0

1 otherwise

m(�

i

) =

�

0 if �

i

2 E

i

1 otherwise

�(�

i

) = hm(�

i

); e(a

i

)i:

Lemma 9.3 For every arrow � and for every " 2 E

0

, we have �(" Æ �) = �(�)

(whenever 
omposition makes sense).

Proof. If e(�) = 0 then 
learly e(" Æ �) = 0 too; vi
e versa, if e(" Æ �) = 0, then the

two "=m fa
torizations (" Æ �) Æ 1 = (" Æ �

"

) Æ �

m

of " Æ � must be equal, so that �

m

is the identity; hen
e � = �

"

, that is � 2 E

0

. The proof of m(�) = 0 i� m(" Æ �) = 0

is similar. a

For a path K : Y �! Z and for �

0

: Z �! V , let K Æ �

0

be the path obtained

by 
omposing the last arrow of K with �

0

(that is, if K = K

0

; �, then K Æ �

0

is

K

0

; � Æ �

0

).

With a path K : X

n

�! X (resp. L : X

n

�! X

m

), we now asso
iate an R-tree

T (K) (resp. a multiset of R-trees T (L)) as follows (de�nition is by indu
tion on the

lengths jKj, jLj of K and L):

T (a) = f

�(a)

(x

i

1

; : : : ; x

i

k

); if a

"

= h�

i

1

; : : : ; �

i

k

i;

T (ha

1

; : : : ; a

m

i) = fT (a

1

); : : : ; T (a

m

)g;

T (K

0

; a) = f

�(a)

(T (K

0

Æ a

"

));

T (L

0

; ha

1

; : : : ; a

m

i) = fT (L

0

; a

1

); : : : ; T (L

0

; a

m

)g:
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Lemma 9.4 Let L : Y �! X

n

and K : X

n

�! X

m

. We have that

T (L;K) = T (K)(T (L

1

)=x

1

; : : : ; T (L

n

)=x

n

);

where L

1

= L Æ �

1

; : : : ; L

n

= L Æ �

n

.

Proof. The 
laim is shown by indu
tion on the length jKj of K. If length is 1, then

K is just � = ha

1

; : : : ; a

m

i; if (a

j

)

"

is h�

i

j(1)

; : : : ; �

i

j(k

j

)

i, we have

T (L;�) = ff

�(a

j

)

(T (L

i

j(1)

); : : : ; T (L

i

j(k

j

)

))g

j=1;:::;m

= T (�)(T (L

1

)=x

1

; : : : ; T (L

n

)=x

n

):

If length is greater than 1, then K is K

0

; � (for � = ha

1

; : : : ; a

m

i), so that

T (L;K

0

; �) = ff

�(a

j

)

(T (L;K

0

Æ (a

j

)

"

)g

j=1;:::;m

= ff

�(a

j

)

(T (K

0

Æ (a

j

)

"

)(T (L

i

)=x

i

))g

j=1;:::;m

by indu
tive hypothesis; on the other hand

T (K

0

; �)(T (L

i

)=x

i

) = ff

�(a

j

)

(T (K

0

Æ (a

j

)

"

)g

j=1;:::;m

(T (L

i

)=x

i

)

= ff

�(a

j

)

(T (K

0

Æ (a

j

)

"

)(T (L

i

)=x

i

)g

j=1;:::;m

and the two members are equal by the indu
tive de�nition of substitution. a

Lemma 9.5 Let K

0

= �(K) for a list of renamings whose �rst 
omponent is iden-

tity;

33

we have T (K) = T (K

0

).

Proof. We �rst 
olle
t some easy fa
ts. Fix any path L : Y �! Z and a renaming

� : Z �! Z. We have:

(i) T (L) = T (L Æ �);

(ii) for every � = ha

1

; : : : ; a

n

i : Z �! X

n

and for every i = 1; : : : ; n, T (L; � Æ a

i

) =

T (L Æ �; a

i

): in fa
t,

T (L; � Æ a

i

) = f

�(�Æa

i

)

(T (L Æ (� Æ a

i

)

"

) = f

�(a

i

)

(T (L Æ � Æ (a

i

)

"

) = T (L Æ �; a

i

)

by uniqueness of fa
torization and Lemma 9.3;

(iii) for every L

0

, T (L; � Æ �;L

0

) = T (L Æ �; �; L

0

), by (ii) and Lemma 9.4.

Now let K = �

1

; : : : ; �

k

, K

0

= �

0

1

; : : : ; �

0

k

and let � = f1 = �

0

; �

1

; : : : ; �

k

g (re
all we

have �

i�1

Æ �

0

i

= �

i

Æ �

i

for all i). We have

T (K) = T (K Æ�

k

) = T (�

1

; : : : ; �

k�1

Æ�

0

k

) = T (�

1

; : : : ; �

k�1

Æ�

k�1

; �

0

k

) = � � � = T (K

0

)

as wanted. a

33

See Se
tion 4 for these 
on
epts.

65



Noti
e that the above Lemma yields in parti
ular that T (K) = T (K

0

) in 
ase K

0

is

an alphabeti
 variant of K: this is important, as we rewrite on equivalen
e 
lasses of

paths modulo alphabeti
 variants. Moreover the above Lemma (whi
h will be ta
itly

used many times during the termination proof) yields the possibility of repla
ing K

with any �(K) (where � has identity as �rst 
omponent) when 
omputing T (K):

this allows moving 
ertain arrows to last position in a tuple of arrows, assuming

that 
ertain proje
tions lo
ated in an internal position of a path proje
t on last


omponents, et
 (see the Examples of Se
tion 4).

Lemma 9.6 Let Æ = hd

1

; : : : ; d

n

i : X

m

�! X

n

be an arrow whi
h is not in E

0

(i.e.

it is not a proje
tion); suppose that Æ

"

= h�

i

1

; : : : ; �

i

k

i : X

m

�! X

k

. We have that

T (Æ; 1

X

n

) > T (Æ

"

; 1

X

k

).

Proof. We have

T (Æ

"

; 1

X

k

) = ff

h0;0i

(f

h0;0i

(x

s

))g

s=i

1

;:::;i

k

and

T (Æ; 1

X

n

) = ff

h0;0i

(f

�(d

j

)

(x

i

j(1)

; : : : ; x

i

j(l

j

)

))g

j=1;:::;n

;

where we supposed that (d

j

)

"

= h�

i

j(1)

; : : : ; �

i

j(l

j

)

i. Now elements of the former

multiset are all distin
t and for every s = i

1

; : : : ; i

k

, there is j su
h that s is among

j(1); : : : ; j(l

j

) (otherwise �

s

would be missed in Æ

"

). This means in parti
ular that for

su
h s; j we have f

h0;0i

(x

s

) � f

�(d

j

)

(x

i

j(1)

; : : : ; x

i

j(l

j

)

) (where this inequality is stri
t

in 
ase the same j 
orresponds to di�erent s). Consequently the former multiset is

less or equal than the latter. It is stri
tly less indeed; in fa
t Æ 
annot be in E

0

for

two independent reasons: some of the �(d

j

) is not h0; 0i or some proje
tion among

h�

i

1

; : : : ; �

i

k

i appears at least twi
e in Æ. In both 
ases, this is a suÆ
ient reason for

the latter multiset to be bigger. a

For a path K = �

1

; : : : ; �

k

, we de�ne 
(K) to be the ve
tor

hT (�

1

; : : : ; �

k

); T (�

1

; : : : ; �

k�1

); : : : ; T (�

1

)i

and for paths K;L, we put

K > L i� 
(K) > 
(L)

where se
ond member refers to the lexi
ographi
 extension of >

m

. Next Lemma says

that 
 is `almost stable by 
on
atenation' as a 
omplexity measure:

Lemma 9.7 Let K : X

m

�! X

n

and K

0

: X

m

�! X

n

be two paths su
h that

K > K

0

(noti
e that they agree on domains and 
odomains); then

(i) for every path L having 
odomain X

m

, we have L;K > L;K

0

;
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(ii) suppose that K = K

0

; ha

1

; : : : ; a

n

i, K

0

= K

0

0

; ha

0

1

; : : : ; a

0

n

i and that T (K

0

; a

i

) �

T (K

0

0

; a

0

i

) holds for all i = 1; : : : ; n; then for every path R having domain X

n

,

we have K;R > K

0

; R.

Proof. Claim (i) dire
tly follows from Lemmas 9.4, 9.2. Let us show (ii). Here it

is suÆ
ient to prove that if T (K

0

; a

i

) � T (K

0

0

; a

0

i

) holds for every i = 1; : : : ; n, then

T (K; b) � T (K

0

; b) holds for every b : X

n

�! X (this yields the 
laim, by indu
tion

on the length of R, be
ause the 
omplexity measure of a path is the ve
tor of trees

asso
iated to left segments of the path itself). Supposing that b

"

is h�

i

1

; : : : ; �

i

k

i, we

have

T (K; b) = f

�(b)

(T (K

0

; a

i

1

); : : : ; T (K

0

; a

i

k

))

T (K

0

; b) = f

�(b)

(T (K

0

0

; a

0

i

1

); : : : ; T (K

0

0

; a

0

i

k

))

hen
e T (K; b) � T (K

0

; b) as wanted. a

Theorem 9.8 R and R

+

are terminating.

Proof. If we have K ) K

0

by rules (R

i




), thenK > K

0

always holds be
ause su
h rules

are length-redu
ing (re
all that in lexi
ographi
 orders for variable length ve
tors,

length is prin
ipal parameter).

A

ording to the above Lemma, it is suÆ
ient to show that for every other rule

L) R of R

+

[R, we have both

(1) T (L Æ �

i

) � T (R Æ �

i

);

for every i = 1; : : : ; n (here X

n

is the 
ommon 
odomain of L;R) and

(2) 
(L) > 
(R):

Noti
e that any (R

"

)-rewrite step is a spe
ial 
ase of a (Rpr)

�

-rewrite step, where

(Rpr)

�

is the rewrite rule

(Rpr)

�

�; " Æ � ) � Æ "; �

(here " is any stri
t proje
tion). Moreover, we know from Lemma 7.2 that any (R

�

)

or (R

�

)

+

-rewrite step is a 
omposition of a �nite number of (R

�

)

+1

and of (Rdi

+1

)

�

-

rewrite steps, where (R

�

)

+1

is (any alphabeti
 variant of)

(R

�

)

+1

h�; ai; � ) h�; a

e

i; (1 � a

�

) Æ �

and (Rdi

+1

)

�

is (any alphabeti
 variant of)

(Rdi

+1

)

�

h�; a; ai; � ) h�; ai; (1 ��

X

) Æ �
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Consequently, it is suÆ
ient to prove (1) and (2) for rules (Rpr)

�

, (R

�

)

+1

, (Rdi

+1

)

�

and (R

i

p

).

Proof of (1) for rule (Rpr)

�

:

�; " Æ � ) � Æ "; �:

Let b any 
omponent of �; as (" Æ b

"

) Æ b

m

is the fa
torization of " Æ b, we have (taking

into a

ount Lemma 9.3):

T (�; " Æ b) = f

�(b)

(T (� Æ " Æ b

"

)) = T (� Æ "; b);

as wanted.

Proof of (2) for rule (Rpr)

�

: by the previous point, we have T (�; " Æ �) =

T (� Æ "; �); however T (�) > T (� Æ ") be
ause the proje
tion is stri
t.

Noti
e that the above established fa
t that T (�; " Æ �) and T (� Æ "; �) are 
ompo-

nentwise equal (together with Lemma 9.4), yields the following important information

to be used in the sequel: let us write K )

�

"

K

0

in order to express that K

0

is obtained

from K by a sequen
e of (Rpr)

�

-rewrite steps; we have that

34

(�) K )

�

"

K

0

implies T (K) = T (K

0

):

Proof of (1) for rule (R

�

)

+1

: �rst member of the rule is

X

n

h�;ai

�! Z �X

�

�! U

whereas se
ond member is (let a

e

= he

1

; : : : ; e

k

i)

X

n

h�;e

1

;:::;e

k

i

�! Z �X

k

(1�a

�

)Æ�

�! U:

Let b be any 
omponent of the ve
tor �; we �rst suppose that b

"

is the identity and

then redu
e to this 
ase. If b

"

is identity, we have

T (h�; ai; b) = f

�(b)

(T (�) [ fT (a)g)

T (h�; e

1

; : : : ; e

k

i; (1 � a

�

) Æ b) � f

�((1�a

�

)Æb)

(T (�) [ fT (e

j

)g

j=1;:::;k

):

(we put � here, be
ause we do not know what ((1 � a

�

) Æ b)

"

is, so we supposed -

worst 
ase - it is identity). We need to prove that T (a) > T (e

j

) for all j = 1; : : : ; k

(then �rst 
lause of the de�nition of orders among our trees applies). Suppose that

a fa
tors as follows

34

(�) is shown as follows: suppose that K )

"

K

0

(in one step); then K = S

0

; L; S

00

and K

0

=

S

0

; R; S

00

, where L and R are the left and right side of a (Rpr)

�

-rule. We have that T (L;S

00

) =

T (R;S

00

) be
ause su
h multisets of trees are obtained by repla
ing variables in the same multiset of

trees by equal trees (noti
e that T (L) and T (R) are not only equal, but also 
omponentwise equal);

the same happens to T (S

0

; L; S

00

) and T (S

0

; R; S

00

) (only a further substitution is operated to get

them).
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X

m+n

0

X

m

-

a

"

X

a

�

�

�

�R

a

m

�

�

�

�	

where n = m+ n

0

and �

"

is h�

1

; : : : ; �

m

i. We have

T (a) = f

�(a)

(x

1

; : : : ; x

m

):

Now observe that ea
h e

j

fa
tors through a

"

(in fa
t, we have a = a

"

Æ((a

m

)

e

Æ(a

m

)

�

),

hen
e, by uniqueness of fa
torizations, he

1

; : : : ; e

k

i = a

e

= a

"

Æ (a

m

)

e

), so that

T (e

j

) � f

�(e

j

)

(x

1

; : : : ; x

m

):

As �(a) = h1; 1i and �(e

j

) = h0;�i,

35

we have T (a) > f

�(e

j

)

(x

1

; : : : ; x

m

) by se
ond


lause in our de�nition of order among trees.

Let us now 
onsider the 
ase in whi
h b

"

is not identity; we apply )

�

"

-rewriting

to both members (being sure that the 
orresponding trees do not 
hange by (�)). We

have two sub
ases. In the �rst sub
ase Z = Z

0

�Z

00

(
onsequently � is split as �

0

; �

00

)

and b

"

is the proje
tion Z

0

� Z

00

�X �! Z

00

�X. We have for �rst member

h�

0

; �

00

; ai; b )

�

"

h�

00

; ai; b

m

and

h�

0

; �

00

; a

e

i; (1 � a

�

) Æ b )

�

"

h�

00

; a

e

i; (1 � a

�

) Æ b

m

for se
ond member, thus redu
ing to the above spe
ial 
ase (now (b

m

)

"

is identity).

In the se
ond sub
ase, b

"

is the proje
tion Z

0

� Z

00

�X �! Z

00

. In this 
ase, both

members )

�

"

-rewrite to the path Y

�

00

�! Z

00

b

m

�! X.

Proof of (2) for rule (R

�

)

+1

: by the previous point, we have that the multiset of

trees 
orresponding to the �rst member of the rule is greater or equal to the multiset

of trees 
orresponding to the se
ond member. In 
ase they are equal, we need to


ompare T (�; a) and T (�; a

e

); as we saw above, the former is greater as a multiset,

be
ause for every 
omponent e

j

of a

e

, we have T (a) > T (e

j

).

Proof of (1) for rule (Rdi

+1

)

�

: �rst member of the rule is

Y

h�;a;ai

�! Z �X �X

�

�! U

whereas se
ond member is

Y

h�;ai

�! Z �X

(1��

X

)Æ�

�! U:

35

Of 
ourse rule does not apply in 
ase �rst 
omponent of �(a) is 0, be
ause in su
h a 
ase a would

have trivial e=� fa
torization as a Æ 1

X

.
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Let b be any 
omponent of the ve
tor �; we �rst suppose that b

"

is the identity and

then redu
e to this 
ase. If b

"

is identity, we have

T (h�; a; ai; b) = f

�(b)

(T (�) [ fT (a); T (a)g)

whi
h is trivially bigger than

f

�((1��

X

)Æb)

(T (�) [ fT (a)g) � T (h�; ai; (1 ��

X

) Æ b);

by �rst 
lause in de�nition of order for trees.

If b

"

is not identity, let Z = Z

0

�Z

00

(
onsequently � splits as �

0

; a

00

) and let b

"

be

either i) h�

Z

00

; �

1

X

; �

2

X

i, or ii) h�

Z

00

; �

1

X

i, or iii) h�

Z

00

; �

2

X

i or �nally iv) �

Z

00

. In the last

three 
ases both members have a)

�

"

-rewriting to the same path (whi
h is h�

00

; ai; b

m

for ii)-iii) and �

00

; b

m

for iv)), so the 
orresponding trees are equal by (�). In the �rst


ase, �rst member)

�

"

-rewrites to h�

00

; a; ai; b

m

, whereas se
ond member)

�

"

-rewrites

to h�

00

; ai; (1 ��

X

) Æ b

m

, thus redu
ing to the above 
onsidered spe
ial 
ase.

Proof of (2) for rule (Rdi

+1

)

�

: by the previous point, we have that the multiset of

trees 
orresponding to the �rst member of the rule is greater or equal to the multiset

of trees 
orresponding to the se
ond member. In 
ase they are equal, we need to


ompare T (�; a; a) and T (�; a): the former is 
learly bigger.

Proof of (1) for rule (R

i

p

): we re
all that �rst member of (R

i

p

) is

Y

h
;Æi

�! Y

1

� Z

h�;�

Z

i

�! Y

2

� Z

�

�! U

whereas se
ond member is

Y

h
;Æ;Æ

"

i

�! Y

1

� Z � Y

0

��1

Y

0

�! Y

2

� Y

0

(1

Y

2

�Æ

m

)Æ�

�! U

(with an extra arrow to the right in 
ase i = 1). This rule is subje
t to the proviso

that Æ 
annot be a proje
tion. Let b be any 
omponent of �; we �rst assume that b

"

is the identity (and then redu
e to this 
ase). We have that

T (h
; Æi; h�; �

Z

i; b) = f

�(b)

(T (h
; Æi; h�; �

Z

i)) = f

�(b)

(T (h
; Æi; �) [ T (Æ; 1

Z

))

where [ refers to multiset union (noti
e that we used (�) above in missed intermediate

passages). We do not know what is ((1�Æ

m

)Æb)

"

: let so take worst 
ase (it is identity)

and pro
eed as follows by using (�) again:

T (h
; Æ; Æ

"

i; �� 1; (1 � Æ

m

) Æ b) � f

�((1�Æ

m

)Æb)

(T (h
; Æ; Æ

"

i; �� 1)) =

= f

�((1�Æ

m

)Æb)

(T (h
; Æi; �) [ T (Æ

"

; 1

Y

0

)):

This tree is indeed smaller than f

�(b)

(T (h
; Æi; �) [ T (Æ; 1

Z

)) (by the �rst 
lause of

the de�nition of trees order): in fa
t, by Lemma 9.6 we have T (Æ; 1

Z

) > T (Æ

"

; 1

Y

0

).
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Let us now turn to the general 
ase (b

"

may not be identity). In su
h a 
ase, let

us transform both

Y

h
;Æi

�! Y

1

� Z

h�;�

Z

i

�! Y

2

� Z

b

�! X

and

Y

h
;Æ;Æ

"

i

�! Y

1

� Z � Y

0

��1

Y

0

�! Y

2

� Y

0

(1

Y

2

�Æ

m

)Æb

�! X

by)

�

"

-rewriting and then apply (�). Suppose we have Y

2

= Y

0

2

�Y

00

2

and Z = Z

0

�Z

00

(
onsequently Æ and � are also splitted as Æ

0

; Æ

00

and �

0

; �

00

, respe
tively); let b fa
tors

as follows:

Y

0

2

� Y

00

2

� Z

0

� Z

00

Y

00

2

� Z

00

-

b

"

X

b

�

�

�

�

�

�

�R

b

m

�

�

�

�

�

�

�	

where b

"

is the obvious proje
tion. We then have for the �rst member

h
; Æi; h�; �

Z

i; b )

�

"

h
; Æ

0

; Æ

00

i; h�

00

; �

Z

00

i; b

m

:

Let us also split Æ

m

: Y

0

�! Z

0

� Z

00

as �

0

; �

00

(as a 
onsequen
e, from hÆ

0

; Æ

00

i = Æ =

Æ

"

ÆÆ

m

, we have in parti
ular Æ

"

Æ�

00

= Æ

00

); an analogous transformation on the se
ond

member gives

h
; Æ; Æ

"

i; � � 1; (1 � Æ

m

) Æ b )

�

"

h
; Æ

0

; Æ

00

; Æ

"

i; �

00

� 1; (1 � �

00

) Æ b

m

:

Let us now fa
torize �

00

= �

00

"

Æ �

00

m

; from Æ

"

Æ �

00

= Æ

00

, by uniqueness of fa
torizations,

we get Æ

00

"

= Æ

"

Æ �

00

"

and Æ

00

m

= �

00

m

; thus, by further )

�

"

-rewrite steps, we get

h
; Æ

0

; Æ

00

; Æ

"

i; �

00

� 1; (1 � �

00

) Æ b

m

)

�

"

h
; Æ

0

; Æ

00

; Æ

00

"

i; �

00

� 1; (1 � Æ

00

m

) Æ b

m

:

Now

h
; Æ

0

; Æ

00

i; h�

00

; �

Z

00

i; b

m

and

h
; Æ

0

; Æ

00

; Æ

00

"

i; �

00

� 1; (1 � Æ

00

m

) Æ b

m

are �rst and se
ond member of a (R

i

p

)-rewrite rule and (b

m

)

"

is the identity. We 
an

so redu
e to the above parti
ular 
ase, ex
ept that now there is no guarantee that

Æ

00

is not a proje
tion: this further 
ase has to be 
onsidered separately. However in

su
h a 
ase, 1� Æ

00

m

is the identity, Æ

00

"

= Æ

00

and all what we need is to prove that trees


orresponding to the paths

Y

h
;Æ

0

;Æ

00

i

�! Y

1

� Z

0

� Z

00

h�

00

;�

Z

00

i

�! Y

00

2

� Z

00
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Y

h
;Æ

0

;Æ

00

;Æ

00

i

�! Y

1

� Z

0

� Z

00

� Z

00

�

00

�1

�! Y

00

2

� Z

00

are the same. Indeed they are both equal to T (h
; Æ

0

; Æ

00

i; �

00

) [ T (Æ

00

; 1

Z

00

) (again by

(�)).

Proof of (2) for rule (R

i

p

): by the previous point, we have that the multiset of

trees 
orresponding to the �rst member of the rule is greater or equal to the multiset

of trees 
orresponding to the se
ond member. This does not prevent from them to

be equal, in some 
ases; hen
e, we 
ompare trees 
orresponding to

Y

h
;Æi

�! Y

1

� Z

h�;�

Z

i

�! Y

2

� Z

and to

Y

h
;Æ;Æ

"

i

�! Y

1

� Z � Y

0

��1

Y

0

�! Y

2

� Y

0

:

The former is T (h
; Æi; �) [ T (Æ; 1

Z

) whereas the latter is T (h
; Æi; �) [ T (Æ

"

; 1

Y

0

): as

Æ 
annot be a proje
tion, Lemma 9.6 applies, showing that the former is greater. a

From the previous se
tion results, we immediately get:

Corollary 9.9 R

+

is 
anoni
al. a

We now 
ompare rewrite systems R

+

and R: it will turn out that they are

essentially the same, hen
e in parti
ular 
anoni
ity of R will follow.

Lemma 9.10 If K )

�

R

+

K

0

, then there exists K

00

su
h that K

0

)

�

R

+

K

00

and

K )

�

R

K

00

.

Proof. Statement is proved by noetherian indu
tion on K (with respe
t to the order

> among paths whi
h has been used in the termination proof). If K = K

0

, the

statement is trivial; otherwise we have, for some K

0

,

K )

R

+ K

0

)

�

R

+

K

0

:

Now there is K

0

0

su
h that

K

0

)

�

R

+

K

0

0

and K )

R

K

0

0

(if the)

R

+-step is done by a rule di�erent than (R

�

)

+

this is trivial, otherwise apply

Lemma 7.1). As R

+

is 
on
uent, there exists K

00

0

su
h that

K

0

0

)

�

R

+

K

00

0

and K

0

)

�

R

+

K

00

0

:

As K

0

0

< K (any kind of rewrite step de
reases 
omplexity, as we saw in the termi-

nation proof), we 
an apply indu
tive hypothesis to K

0

0

, yielding K

00

su
h that

K

0

)

�

R

+

K

00

0

)

�

R

+

K

00

and K )

R

K

0

0

)

�

R

K

00

as wanted. a
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Lemma 9.11 If K )

�

R

K

0

, then K ,

�

R

+

K

0

.

Proof. Statement is again proved by noetherian indu
tion on K. The only relevant


ase is when we have K )

R

K

0

by a single (R

i

p

)-rewrite step, whi
h is 
overed by

Lemma 7.6 (iii). a

We 
an �nally 
omplete the

Proof of Theorem 5.3. As we know from Proposition 9.8 thatR is terminating,

we only have to prove its 
on
uen
e. Suppose we have that

K )

�

R

K

0

and K )

�

R

K

00

:

Then K

0

,

�

R

+

K

00

by Lemma 9.11; as R

+

is 
anoni
al, K

0

and K

00

both)

�

R

+

-rewrite

to their 
ommon normal form N . By Lemma 9.10, there are N

0

; N

00

su
h that

N )

�

R

+

N

0

; K

0

)

�

R

N

0

N )

�

R

+

N

00

; K

00

)

�

R

N

00

However N is in R

+

-normal form, hen
e N

0

= N = N

00

is a path to whi
h K

0

;K

00

both )

�

R

-redu
e. a

10 Examples and Related Work

In this Se
tion we illustrate our results in 
on
rete 
ases. First, we gave in Se
tion

5 a de�nition of 
onstru
tibility for theories referring to their asso
iated Lawvere


ategories. Now we give a useful equivalent purely symboli
 de�nition:

Proposition 10.1 A theory T

0

= h


0

; Ax

0

i is 
onstru
tible over a theory T = h
; Axi

i� T

0

is a 
onservative extension of T and there exists a 
lass E

0

of 


0

-terms su
h

that:

(i) E

0


ontains the variables and is 
losed under renamings of terms;

(ii) for every 


0

-term t(x

1

; : : : ; x

n

) there exist a k-minimized 
-term u(x

1

; : : : ; x

k

)

and pairwise distin
t (with respe
t to provable identity in T

0

) 


0

-terms

v

1

(x

1

; : : : ; x

n

); : : : ; v

k

(x

1

; : : : ; x

n

)

belonging to E

0

su
h that

`

T

0

t = u(v

1

; : : : ; v

k

);
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(iii) whenever u; u

0

are k (resp. k

0

)-minimized 
-terms and we have

`

T

0

u(v

1

; : : : ; v

k

) = u

0

(v

0

1

; : : : ; v

0

k

0

)

for pairwise distin
t (wrt T

0

-provability) terms v

1

; : : : ; v

k

2 E

0

and pairwise

distin
t (wrt T

0

-provability) terms v

0

1

; : : : ; v

0

k

0

2 E

0

, then k = k

0

and there is a

permutation � a
ting on the k-elements set,

36

su
h that

`

T

0

v

0

�(i)

= v

i

(i = 1; : : : ; k) and `

T

u

0

= u(x

�(i)

=x

i

):

Proof. If T

0

is 
onstru
tible over T , in T

0

there is a left extension (E

0

;M) of the

standard weak fa
torization system (E ;M) of T. In order to �nd E

0

ful�lling the

above requirements it is suÆ
ient to take the set of terms t(x

1

; : : : ; x

n

) su
h that the

equivalen
e 
lass of t (seen as an arrow X

n

�! X in T

0

) belongs to E

0

. To see that (i)-

(iii) hold, we only have to show that if an arrow from T like he

1

; : : : ; e

m

i : X

n

�! X

m

belongs to E

0

, then the e

i

are pairwise distin
t and, vi
e versa, that if all e

i

belong to

E

0

and are pairwise distin
t, then he

1

; : : : ; e

n

i belongs to E

0

; these fa
ts follow from

Corollary 7.4.

Vi
e versa, suppose that a 
lass E

0

of 


0

-terms ful�lling the above requirements is

given. We de�ne a left extension (E

0

;M) of the standard weak fa
torization system

(E ;M) of T by taking as E

0

the set of arrows he

1

; : : : ; e

m

i : X

n

�! X

m

su
h that

the e

i

are represented by distin
t (up to provable identity in T

0

) terms in E

0

.

First noti
e that, if � = ha

1

; : : : ; a

n

i 2 E

0

\ T, then � ia an n-tuple of distin
t

proje
tions by an immediate appli
ation of (iii) to (the symboli
 meaning of) the


ommutativity of the squares

Z = X X

-

(a

i

)

�

Y X

-

a

i

?

(a

i

)

"

?

1

X

We 
an easily fa
torize arrows a having 
odomain X (just apply (ii) to �nd a

e

and

a

�

). To fa
torize arrows ha

1

; : : : ; a

m

i : X

n

�! X

m

, it is suÆ
ient to fa
torize ea
h

a

i

as he

i1

; : : : ; e

ik

i

i Æ �

i

and then `diagonalize' as follows: let he

1

; : : : ; e

s

i be any list

of the distin
ts elements of fe

ij

g and let Æ be a diagonal su
h that he

1

; : : : ; e

s

i Æ Æ =

he

11

; : : : ; e

mk

m

i. We fa
torize ha

1

; : : : ; a

m

i as he

1

; : : : ; e

s

iÆ(Æ Æ(�

1

�� � ���

m

)). Noti
e

that Æ Æ (�

1

�� � ���

m

) is still represented by a minimized ve
tor of terms: in fa
t, for

every i, as e

i1

; : : : ; e

ik

i

are all distin
t, Æ 
omposed with the proje
tion from X

P

k

i

onto the domain of �

i

is a proje
tion �

i

: X

s

�! X

k

i

(hen
e the i-th 
omponent of

36

Su
h � is 
learly unique given that the v

i

are distin
t.
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Æ Æ (�

1

� � � � � �

m

) is �

i

Æ �

i

); moreover proje
tions f�

i

g altogether 
annot miss any


omponent of X

s

(by the very de�nition of the list he

1

; : : : ; e

s

i).

To show uniqueness of fa
torizations suppose you have a 
ommutative square

Y

2

X

n

-

�

1

Z Y

1

-

�

2

?

�

1

?

�

2

with �

1

; �

2

2 E

0

and �

1

; �

2

2M. The �

1

; �

2

are lists formed by distin
t 
omponents

(by the de�nition of the 
lass E

0

); let us �rst show that ea
h 
omponent a of �

1

appears as a 
omponent of �

2

too (and vi
e versa, so that �

1

and �

2

di�er only

by a renaming). As �

1

is represented by a minimized ve
tor of terms, there is a


omponent s of �

1

su
h that �

1

Æ s

"


ontains a; if s is the i-th 
omponent of �

1

, let r

be the 
orresponding i-th 
omponent of �

2

. By 
ommutativity of the square, we have

(�

1

Æs

"

)Æs

�

= (�

2

Ær

"

)Ær

�

; by (iii), there is a renaming � su
h that �

1

Æs

"

Æ� = �

2

Ær

"

and � Æ r

�

= s

�

. The former shows that a is a 
omponent of �

2

.

We so established that �

1

; �

2

di�er only for a renaming, i.e. that there is a re-

naming � su
h that �

1

Æ � = �

2

. Now � Æ �

2

= �

1

immediately follows from the


ommutativity of the above square and from the following

Claim. If � 2 E

0

and �; � 2 T

0

, then � Æ � = � Æ � implies � = �.

The 
laim is obvious in 
ase �; � are proje
tions, be
ause the 
omponents of �

are distin
t. In the general 
ase, it is suÆ
ient to prove the Claim for �; � having


odomain X; if 
odomain is X, from (� Æ �

"

) Æ �

�

= (� Æ �

"

) Æ �

�

, we have (by (iii))

(�Æ�

"

)Æ� = �Æ �

"

and �Æ �

�

= �

�

for a renaming �. As �

"

Æ� and �

"

are proje
tions,

we just saw (this is the above mentioned obvious 
ase) that �

"

Æ � = �

"

, hen
e

� = �

"

Æ �

�

= �

"

Æ � Æ �

�

= �

"

Æ �

�

= �

as required. a

We say that T

0

is e�e
tively 
onstru
tible over T i� it is 
onstru
tible over T and

moreover for every term t, terms u; v

1

; : : : ; v

k

satisfying (ii) above are provided by

a total re
ursive fun
tion. As an immediate 
orollary to our main Theorem 5.3, we

have:

Theorem 10.2 Suppose that T

1

; T

2

are both e�e
tively 
onstru
tible over T

0

and that

word problems for T

1

; T

2

are solvable; then word problem for T

1

+

T

0

T

2

is solvable too.

Proof. By Theorem 3.1, Lemma 4.1, 5.2 and Theorem 5.3, it is suÆ
ient to show

that appli
ability of rules of R is e�e
tive whenever a path is given as a list of

terms, representing their respe
tive equivalen
e 
lasses (in order to be able to 
ompare
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normal forms, we need also to 
he
k that it is e�e
tively re
ognizable whether two

paths are alphabeti
 variants ea
h other).

For rules (R

i




) we need to be able to re
ognize whether a 
ertain arrow �

i


omes

from T

0

: this happens i� �

e

2 E

0

(by uniqueness of e=� fa
torization and by the

fa
t that E

0

� E

i

), a fa
t whi
h is e�e
tive by appealing to the solvability of word

problem for T

i

.

37

For rule (R

"

) we already observed in Se
tion 5 that "-extra
tion

is e�e
tive in 
ase word problem is de
idable. For rule (R

�

), one just use e�e
tive


onstru
tibility, together with the fa
t that the e=� fa
torization of ha

1

; : : : ; a

n

i 
an

be redu
ed to the e=� fa
torization of 
omponents, see Lemma 7.2. Finally, in order

to apply rules (R

i

p

) (and 
he
king the relative proviso) it is suÆ
ient to be able to

re
ognize proje
tions, a fa
t whi
h is redu
ed on
e again to solvability of the input

word problems.

Last, we show that it is e�e
tively re
ognizable whether two paths are alphabeti


variants ea
h other. In 
ase they are both in normal form (whi
h is the relevant 
ase),

there is a qui
k pro
edure for that. First, for �

1

; : : : ; �

k

to be an alphabeti
 variant

of �

1

; : : : ; �

k

0

we need k = k

0

; se
ondly, as the 
omponents of �

1

and �

1

are distin
t

(be
ause paths are in normal form and (R

�

) does not apply), it is easily 
omputed -

provided it exists - the renaming �

1

su
h that �

1

Æ�

1

= �

1

; at this point, we re
ursively

need to 
he
k whether �

�1

1

Æ �

2

; : : : ; �

k

is an alphabeti
 variant of �

2

; : : : ; �

k

and so

on. a

Example. Commutative rings with unit are 
onstru
tible over abelian groups. In

fa
t terms t(x

1

; : : : ; x

n

) in the theory of abelian groups 
an be represented as homo-

geneous linear polynomials in the indeterminates x

1

; : : : ; x

n

with integer 
oeÆ
ients

(they are minimized i� no 
oeÆ
ient is zero); terms in the theory of 
ommutative

rings with unit 
an be represented as arbitrary polynomials with integer 
oeÆ
ients.

Class E

0

needed for 
onstru
tibility is formed by moni
 monomials (1 in
luded): in

fa
t, every integer polynomial 
an be uniquely expressed as a linear 
ombination (with

integer non-zero 
oeÆ
ients) of distin
t moni
 monomials. a

Example. Let T be the theory of join-semilatti
es with zero and let T

0

be the

theory of semilatti
e-monoids we met in the Introdu
tion. T

0

is 
onstru
tible over T :


lass E

0

is given by terms of the form x

i

1

Æ � � � Æ x

i

k

(for k � 0). a

Example The theory of abelian groups endowed with an endomorphism f is


onstru
tible over the theory of abelian groups: 
lass E

0

is given by terms of the form

f

n

(x

i

) (for n � 0). a

Example Di�erential rings (i.e. of rings endowed with a di�erentiation operator

� satisfying usual laws for derivatives of sums and produ
ts) are 
onstru
tible over


ommutative rings with unit: 
lass E

0

is given by terms of the form f�

k

x

i

g (for k � 0).

37

Clearly if term t represents a : X

n

�! X, then a is a proje
tion i� t 
ollapses to (i.e. it is

provably equal to) a variable x

i

(for i = 1; : : : ; n); a similar observation applies to ve
tor of terms.
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a

Noti
e that in the above examples the smaller theory is not 
ollapse-free. Addi-

tional examples of di�erent nature 
an be found in [3, 4℄. In order to build 
ounterex-

amples, a useful tool is the following Proposition (
learly inspired from [3, 4℄):

Proposition 10.3 If T

0

is 
onstru
tible over T , then the T -redu
t of any free T

0

-

algebra is a free T -algebra (on a bigger set of generators).

Proof. Let F

T

0

(G) be the free T

0

-algebra on the set G of generators; we show that its

T -redu
t is free over the set of elements of the form u(g

1

; : : : ; g

n

) where u(x

1

; : : : ; x

n

) 2

E

0

and g

1

; : : : ; g

n

are distin
t elements from G. Clearly the 
laim follows from the 
ase

in whi
h G is �nite. To have a qui
k proof we translate everything in the terminology

of fun
torial semanti
s.

Let (E ;M) be the standard weak fa
torization system of T and let (E

0

;M) be

its left extension to T

0

. For any fun
tor F having domain T

0

let us 
all jF j its

restri
tion to T; for any type Y let E

0

(Y;X) be T

0

(Y;X) \ E

0

. Fix a type Y and a

T -algebra A : T �! Set; we need to �nd a bije
tive natural 
orresponden
e between

set-theoreti
 fun
tions

�

N : E

0

(Y;X) �! A(X)

and natural transformations

N : jT

0

(Y;�)j �! A:

Given N , let

�

N be the restri
tion of N

X

to E

0

(Y;X) in the domain. Conversely, if

�

N

is given, we de�ne for every Z and � : Y �! Z

N

Z

(�) = A(�

�

)(

�

N(e

1

); : : : ;

�

N (e

k

))

where �

e

= he

1

; : : : ; e

k

i. In order to prove naturality ofN so de�ned, take � : Z �! Z

0

in T; we need to show the 
ommutativity of the square

jT(Y;Z

0

)j A(Z

0

)

-

N

Z

0

jT(Y;Z)j A(Z)

-

N

Z

?

jT(Y; �)j

?

A(�)

We have

A(�)(N

Z

(�)) = A(�)(A(�

�

)(

�

N(e

1

); : : : ;

�

N (e

k

))) = A(�

�

Æ �)(

�

N(e

1

); : : : ;

�

N(e

k

)):

On the other hand, let �

�

Æ � fa
torize in "=�-
omponents as follows:
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X

m

Z

0

-

�

X

k

Z

-

�

�

?

�

?

�

where � = h�

i

1

; : : : ; �

i

m

i. We have

N

Z

0

(jT(Y; �)(�)j) = N

Z

0

(� Æ �)

= N

Z

0

(�

e

Æ � Æ �)

= A(�)(

�

N (e

i

1

); : : : ;

�

N(e

i

m

))

= A(�)(A(�)(

�

N (e

1

); : : : ;

�

N(e

k

)))

= A(� Æ �)(

�

N(e

1

); : : : ;

�

N (e

k

))

= A(�

�

Æ �)(

�

N(e

1

); : : : ;

�

N(e

k

)):

Bije
tivity and naturality of the 
orresponden
e N  !

�

N are immediate. a

Counterexample. Boolean algebras are not 
onstru
tible over join-semilatti
es

with zero. In fa
t the free join-semilatti
e with zero over an in�nite set G of generators

is just the set of �nite subsets of G; in this algebra, 
learly the stri
t part of the

partial order relation asso
iated with the join is terminating. It is not so however in

the 
ountably generated free Boolean algebra, whi
h is atomless. a

Counterexample. Modal algebras (also K4-modal algebras, interior algebras,

diagonalizable algebras, et
.) are not 
onstru
tible over Boolean algebras: in fa
t, in

su
h varieties, �nitely generated free algebras are atomi
 and in�nite,

38

whereas free

Boolean algebras are either �nite or atomless. a

Let us now give examples of normalization through our rewriting system R. In

order to apply normalization to paths of equivalen
e 
lasses of terms, algebrai
 nota-

tion for rules must be 
onverted into ordinary symboli
 notation. This is not diÆ
ult

(all needed information is 
ontained in Se
tion 2 above), however some 
are is needed.

Suppose e.g. you want to apply produ
ts rule to the path

X

3

-

ht; ui

X

2

-

hv; x

2

i

X

2

X

-

w

First u(x

1

; x

2

; x

3

) has to be minimized (this is the fa
torization Æ = Æ

"

Æ Æ

m

in the

Table of rules of Se
tion 5). Suppose it minimizes as u

0

(x

1

; x

3

); the pair of proje
tions

hx

1

; x

3

i stays in �rst position, whereas u

0

(x

1

; x

2

) is moved in third position. However,

the term moved to last position for 
omposition with w(x

1

; x

2

) (the arrow 1� Æ

m

of

38

These are well-known results. For a proof making use of normal forms, see [7℄.
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the Table of rules), requires a renaming away from x

1

and 
onsequently it is the pair

hx

1

; u

0

(x

2

; x

3

)i. Thus the produ
ts rule rewrite step produ
es

X

3

-

ht; u; x

1

; x

3

i

X

4

-

hv; x

3

; x

4

i

X

3

X

-

w(x

1

; u

0

(x

2

; x

3

))

In the examples below we 
onsider the following theories:

T

0

= Abelian groups with period 2

T

1

= Boolean rings

T

2

= T

0

+ an idempotent endomorphism f (i.e., su
h that f(f(x

1

)) = f(x

1

))

We leave to the reader to 
he
k that T

1

; T

2

are both 
onstru
tible over T

0

.

Example. Let us 
onsider the following instan
e of word problem in the theory

T

1

+

T

0

T

2

:

f(x

1

� x

2

+ x

2

+ f(x

2

))

?

= f(x

1

� x

2

)

Let us rewrite a splitting path of �rst member in R.

X

2

-

hx

1

; x

2

; f(x

2

)i

X

3

-

x

1

� x

2

+ x

2

+ x

3

X X

-

f(x

1

)

+

R

�

X

2

-

hx

1

; x

2

; f(x

2

)i

X

3

-

hx

1

� x

2

; x

2

; x

3

i

X

3

X

-

f(x

1

+ x

2

+ x

3

)

+

(R

2

p

)

X

2

-

hx

1

; x

2

; f(x

2

); x

2

i

X

4

-

hx

1

� x

2

; x

2

; x

4

i

X

3

X

-

f(x

1

+ x

2

+ f(x

3

))

+

R

"

X

2

-

hx

1

; x

2

; x

2

i

X

3

-

hx

1

� x

2

; x

2

; x

3

i

X

3

X

-

f(x

1

+ x

2

+ f(x

3

))

+

(R

1




)

X

2

-

hx

1

� x

2

; x

2

; x

2

i

X

3

X

-

f(x

1

+ x

2

+ f(x

3

))

+

R

�

X

2

-

hx

1

� x

2

; x

2

i

X

2

X

-

f(x

1

+ x

2

+ f(x

2

))

+

R

"

X

2

-

x

1

� x

2

X X

-

f(x

1

)

where the last path 
orresponds to the splitting path of the term f(x

1

� x

2

). a
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Example. Let us 
onsider the following instan
e of word problem for T

1

+

T

0

T

2

:

f(x

1

) � f(x

2

) + f(x

1

) � (f(x

1

) + f(x

2

))

?

= f(x

1

)

We rewrite �rst member as follows.

X

2

-

hf(x

1

); f(x

2

); f(x

1

) + f(x

2

)i

X

3

-

hx

1

� x

2

; x

1

� x

3

i

X

2

X

-

x

1

+ x

2

+

R

�

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

hx

1

; x

2

; x

1

+ x

2

i Æ hx

1

� x

2

; x

1

� x

3

i

X

2

X

-

x

1

+ x

2

=

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

hx

1

� x

2

; x

1

� (x

1

+ x

2

)i

X

2

X

-

x

1

+ x

2

+

R

�

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

hx

1

� x

2

; x

1

i

X

2

X

-

hx

1

; x

1

+ x

2

i Æ (x

1

+ x

2

)

=

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

hx

1

� x

2

; x

1

i

X

2

X

-

x

1

+ x

1

+ x

2

+

R

"

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

hx

1

� x

2

; x

1

i Æ x

2

X X

-

x

1

=

X

2

-

hf(x

1

); f(x

2

)i

X

2

-

x

1

X X

-

x

1

+

(R

2




)

X

2

X

-

f(x

1

)

where the last path 
oin
ides with the se
ond term of the problem. a

We now make a 
omparison with results from [3, 4℄. Let T = (
; Ax) and T

0

=

(


0

; Ax

0

) be equational theories su
h that T

0

is a 
onservative extension of T . Let G

be the set of 


0

-terms r su
h that 6`

T

0

r = t for all 


0

-terms t with top symbol in


. Noti
e that G 6= ; i� V � G, where V is the set of variables. Moreover, G is

empty in 
ase T is not 
ollapse-free. We say that T

0

is BT-
onstru
tible over T i�

the following hold:

(I) V � G (hen
e T is 
ollapse-free);
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(II) for all 


0

-term t, there are an 
-term s and a ve
tor ~r of terms in G su
h that

`

T

0

t = s(~r);

(III) for every pair s

1

; s

2

of 
-terms and for every pair of ve
tors ~r

1

; ~r

2

of terms from

G, we have

`

T

0

s

1

(~r

1

) = s

2

(~r

2

) i� `

T

s

1

(~z

1

) = s

2

(~z

2

)

where ~z

1

; ~z

2

are fresh ve
tors of variables abstra
ting ~r

1

; ~r

2

so that two terms

in ~r

1

; ~r

2

are abstra
ted by the same variable i� they are provably equal in T

0

.

We now show that if T

0

is BT-
onstru
tible over T , then T

0

is 
onstru
tible over T

(in our sense). We use Proposition 10.1 above taking E

0

= G. Let us �rst show

uniqueness of fa
torizations. Suppose that we have k (resp. k

0

)-minimized 
-terms

u; u

0

and that we have `

T

0

u(v

1

; : : : ; v

k

) = u

0

(v

0

1

; : : : ; v

0

k

0

) for pairwise distin
t (wrt

T

0

-provability) terms v

1

; : : : ; v

k

2 G and pairwise distin
t (wrt T

0

-provability) terms

v

0

1

; : : : ; v

0

k

0

2 G. Let w

1

; : : : ; w

s

be the terms whi
h are 
ommon to the lists v

1

; : : : ; v

k

and v

0

1

; : : : ; v

0

k

0

. For simpli
ity, let us also rearrange su
h lists as

v

1

; : : : ; v

k

= w

1

; : : : ; w

s

; r

1

; : : : r

l

and v

0

1

; : : : ; v

0

k

0

= w

1

; : : : ; w

s

; r

0

1

; : : : ; r

0

l

0

:

Then, applying (III), we get

`

T

u(x

1

; : : : ; x

s

; y

1

; : : : ; y

l

) = u

0

(x

1

; : : : ; x

s

; z

1

; : : : ; z

l

0

)

whi
h 
annot be (unless l = l

0

= 0, yielding what we need) be
ause u and u

0

are

minimized: in fa
t, repla
ing e.g. all the y

i

by a ground term 
 we would get

`

T

u(x

1

; : : : ; x

s

; 
; : : : ; 
) = u

0

(x

1

; : : : ; x

s

; z

1

; : : : ; z

l

0

) = u(x

1

; : : : ; x

s

; y

1

; : : : ; y

l

)


ontrary to the fa
t that u is minimized.

Showing the existen
e of fa
torization is a little more tri
ky be
ause the require-

ments in (II) above look more liberal than those in Proposition 10.1(ii) (it is not

asked for s to be minimized, not for the ~r to be distin
t (up to probability) and

to 
ontain only at most the variables of the original t). We progressively re�ne the

fa
torization in (II). First, if we have (let ~r = r

1

; : : : ; r

k

) `

T

0

t = s(r

1

; : : : ; r

k

) for non

distin
t r

i

, then we 
an identify variables in s(x

1

; : : : ; x

k

) and redu
e 
orrespondingly

the list r

1

; : : : ; r

k

to a list formed by distin
t elements. If furthermore s(x

1

; : : : ; x

k

)

is not minimized, then we 
an minimize it and remove the 
orresponding r

i

from

the list. Thus we obtained a fa
torization of t(x

1

; : : : ; x

n

) as s(r

1

; : : : ; r

k

) where s

is k-minimized and the r

i

are pairwise distin
t (up to provability in T

0

) terms of G.

Suppose that the r

i


ontain additional variables, say that they 
ontain variables from

x

1

; : : : ; x

k

; ~y; we have (let ~x = x

1

; : : : ; x

k

)

`

T

0

t(~x) = s(r

1

(~x; ~y); : : : ; r

k

(~x; ~y))
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Let ~z be renamings of the ~y; we get

`

T

0

t(~x) = s(r

1

(~x; ~z); : : : ; r

k

(~x; ~z))

hen
e

`

T

0

s(r

1

(~x; ~y); : : : ; r

k

(~x; ~y)) = s(r

1

(~x; ~z); : : : ; r

k

(~x; ~z)):

We 
an now apply (III) to this situation; as s is minimized we must have

`

T

0

r

i

(~x; ~y) = r

i

(~x; ~z)

for all i = 1; : : : ; k (eventually up to a permutation). Repla
ing all the ~y by ground

terms ~
 (we may use the same ground term for all of them), we get

`

T

0

r

i

(~x;~
) = r

i

(~x; ~z) = r

i

(~x; ~y):

Now r

i

(~x;~
) is provably equal to r

i

(~x; ~y), hen
e as the latter is in G so is the former

(G is 
losed under provably identi
al terms a

ording to its de�nition). For the same

reason, all the r

i

(~x;~
) are pairwise distin
t (with respe
t to provable identity in T

0

)

be
ause so are the r

i

(~x; ~y). We �nally get

`

T

0

t(~x) = s(r

1

(~x;~
); : : : ; r

k

(~x;~
))

whi
h is a fa
torization mat
hing all the requirements from Proposition 10.1(ii).

Summing up, the di�eren
e between the de�nition of 
onstru
tibility of [3, 4℄ and

ours, lies in the fa
t that we do not need any spe
i�
 de�nition for the 
lass E

0

of

terms used in fa
torizations.

The re�nement fa
torization te
hnique we used above for 
omparison with BT-


onstru
tibility is interesting by itself. Combining it with the proof of Proposition

10.3, it is not diÆ
ult to get the following third 
hara
terization of 
onstru
tibility:

Proposition 10.4 Let T

0

be a 
onservative extension of T . We have that T

0

is


onstru
tible over T i� the T -redu
t of any T

0

-free algebra F

T

0

(G

0

) is a free T -algebra

over a set of generators G su
h that

� G

0

� G;

� G is invariant under the T

0

-isomorphisms of F

T

0

(G

0

) whi
h are the extension

of a bije
tion on the set of free generators G

0

.

To �nish, let us mention some possible dire
tions for future resear
h. Of 
ourse,

there is the problem of extending our results to 
ombined uni�
ation. Se
ondly, one

may try to generalize 
ombined word problems to the 
ase in whi
h the de�nition of


onstru
tibility is related to a weak fa
torization system of the smaller theory whi
h

may not be the standard one (that is, 
lass E

0

is supposed to be larger than the
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lass of proje
tions). Results from Se
tion 6 are still valid, however it is not 
lear

what happens with 
riti
al pairs arising from superpositions with produ
ts rule. Su
h

enlargements of the de�nition of 
onstru
tibility are important be
ause they 
ould


over additional mathemati
ally relevant examples. Finally, although quite diÆ
ult,

it would be essential to be able to deal with theories extending T

1

+

T

0

T

2

with further

axioms. In prin
iple, as our 
ombination algorithm is obtained through rewriting, one

may try to apply some form of Knuth-Bendix 
ompletion to get de
ision pro
edures

in su
h situations too.
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