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Abstract. We give an algorithm solving combined word problems (over non nec-
essarily disjoint signatures) based on rewriting of equivalence classes of terms. The
canonical rewriting system we introduce consists of few transparent rules and is ob-
tained by applying Knuth-Bendix completion procedure to presentations of pushouts
among categories with products. It applies to pairs of theories which are both con-
structible over their common reduct (on which we do not make any special assump-
tion).

*Lavoro svolto nell’ambito del progetto MURST “Logica”.



1 Introduction

An essential problem in automated deduction consists in integrating theorem provers
which are able to perform separated tasks. In the field of equational logic, this leads
in particular to the following question: suppose you are able to solve word problems
for theories T7,T%; can you solve word problem for 77 U757 Better, can you design
an algorithm taking as input two arbitrary algorithms for word problems for T} and
T5 and realizing a decision procedure for word problem for T} U T5?

In case T1,T5 have disjoint signatures the positive answer was known from long
time [12], although only more recently discovered within automated deduction com-
munity (see e.g. [11]). In the general case, combining decidable word problems may
leads to undecidability, even if we suppose that T, T, are both conservative over their
common reduct Ty. To this aim, consider the following example. Let T be the theory
of join-semilattices with zero (i.e. of commutative idempotent monoids) and let T}
be the theory of Boolean algebras. As T, we take the theory of semilattice-monoids,
which are algebras having both a monoid and a join-semilattice with zero structure
and which satisfy the further equation:
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Ty clearly has decidable word problem (free algebras are finite sets of lists of the
generators), as well as T}. The union theory (which we better indicate with T} +7, T%)
corresponds to the ‘distributive linear logic’ of [8] and falls within the undecidability
results of [1].

Clearly something must be assumed in order to have positive solution to combined
word problems; in the literature it is usually assumed that 77,75 share a set of
constructors (we prefer the terminology ‘they are both constructible over Ty’). There
are various definitions of constructors and depending on such definitions there are
variable strength results. Main papers on the subject are [5] and [3, 4]: the second has
a weaker definition and consequently a stronger result. Our definition is again weaker
(see Section 10 for details) and, more important, it covers natural mathematical
examples and does not make any strong assumption on Ty (in [5] Tp is assumed to be
free, in [3, 4] to be collapse-free).!

[5] and [3, 4] use quite different methods: in [3, 4] the combined decision algo-
rithm is obtained through a refutation technique manipulating equations according to
certain non-deterministic rules. As such it has the advantage of being more flexible,
although it does not provide normal forms. On the contrary, [5] (and the similar
method of [11] for the disjoint case) directly manipulate terms by abstracting and
collapsing alien subterms and the suggested algorithm follows a complex and rigidly

'Recall that an equational theory is said to be collapse-free iff it cannot prove equations of the
kind z = ¢, where z is a variable and ¢ is a non-variable term.



preassigned procedure. Our method is more similar to that of [5] (in the sense that it
manipulates terms), but has the same flexibility advantages as the method of [3, 4].
The idea is simple: we build a canonical rewriting system which is able to normalize
paths of mixed pure terms.

The realization of such a plan looks very hard at a first glance: terms from com-
bined signatures are quite unreliable datatypes, basically because they can compose,
decompose and even collapse in many uncontrolled and overlapping ways. However,
we shall put such complex combinatorics under the control framework provided by
the categorical approach to equational logic: such approach goes back to the classical
pioneering paper of F.W. Lawvere [9] in functorial semantics.? Basically, equational
theories are identified with categories with products, so that in our situation we need
to manipulate presentations of pushouts among such categories. We get a first gen-
eral and simple presentation of these pushouts in Section 3 by means of two-sides
rewrite rules. To this presentation we apply, in Section 5, Knuth-Bendiz completion
procedure and get the desired rewriting system, under some ‘constructors’ hypothesis
for our theories.

This constructors hypothesis is formulated within a categorical framework in Sec-
tion 5 by means of (weak) factorization systems and translated in symbolic terms
in Section 10: roughly speaking, T; is said to be constructible over T} iff there is a
class F; of terms (including variables and closed under renamings) in the signature
Q! of T; so that any Q'-term #(z1,...,z,) decomposes uniquely (up to provable iden-
tity) as w(vy,...,vr) where the v;(z1,...,z,) are (always up to provable identity)
distinct terms from E; and w is a k-minimized term in the signature 00 of T} (a term
u(xy,...,xk) is said to be k-minimized iff it is not provably identical to any term in
which only variables coming from a proper subset of {z1,...,zx} occur). Examples
are provided in Section 10 (a typical example is the case of commutative rings with
unit which are constructible over abelian groups).

We briefly describe here the rewriting system R we obtain. R consists of only
four rules (for technical reasons concerning ‘colours’ of terms, two of such rules are
‘duplicated’). First rule (called composition rule) simply allows to compose equally
coloured consecutive (equivalence classes of) terms. Second rule (called e-extraction
rule) minimizes terms by ‘moving left’ projections (i.e. n-tuples of distinct variables).
Third rule (called p-extraction rule) ‘moves right’ the second component of the above
mentioned factorization of terms. The fourth rule (called products rule) is suggested
by the completion procedure and has the following meaning: any projection (i.e. any
tuple of distinct variable terms) appearing in an internal position of a path of pure
terms represents a ‘hole’ and the normalization process is supposed to fill such a hole
by ‘moving right’ genuine terms (i.e. terms which are not projections). The complete
table of rules of R is given at the end of Section 5.

*We recall that there is another quite interesting category-theoretic approach to universal algebra,
namely the monads approach (which has also been significantly used in questions related to rewriting,
see e.g. [10]).



Although R is a quite simply described system, the confluence proof requires long
work, because all critical pairs must be examined. This leads to a large amount of
details, all consisting of elementary computations (in fact, once the technical tools
are appropriately settled, single cases are treated in the most natural way).

The paper is organized as follows: in Section 2 we recall the necessary background
from functorial semantics; in Section 3 we get a first presentation of pushouts among
Lawvere categories. In Sections 4-5 we apply completion procedure and get the appro-
priate rewriting system R. In Section 6 we provide local confluence and termination
for a simple subsystem Rg of R. In Section 7 a third rewriting system, called R™ is
introduced (R is equivalent to R, it normalizes slower but it is easier to manage); in
addition useful technical facts are collected. In Section 8, R™ is proved to be locally
confluent, whereas in Section 9 termination of both R and R is established. Finally,
equivalence between R and R and canonicity of the former are obtained. Section 10
provides examples of constructible theories and of normalizations of paths of terms;
a comparison with results of [3, 4] is done at the end of the paper.

Sections 6-7-8-9 can be skipped in a first reading by people mostly interested in
our results (and less interested in their proofs).

This technical report is fully detailed and self-contained. We only assume a certain
familiarity with rewriting (for some unexplained notions readers may consult [2]).

2 A short summary in functorial semantics

We recall that a category with finite products C is a category in which for every finite
list of objects Xi,..., X, (n > 0) there is an object Xy x --- X X, and there are
Arrows

T X ) X Xy — X

(to be denoted simply as 7x, or ;) enjoying the following universal property:

e for every object Z, for every n-tuple of arrows «o; : 7 — X; (1 = 1,...,n)
there is a unique arrow a : Z — X; X --- X X,, such that « o m; = «; for all
i=1,...,n% (such « is usually indicated by (a,...,ap,)).

The definition includes the case n = 0 and n = 2: in fact, such two cases are sufficient
for the general case n > 0. We can so equivalently give the definition in the following
way: a category C is said to have finite products iff

e there is a terminal object, namely an object 1 such that for every object X
there is just one arrow X — 1 (such arrow is noted ( ) or { )x);

3Composition of arrows s Pina category is denoted as o 3 in this paper (contrary to some
more frequent notations like 3o a). We think that directly following ‘arrow pictures’ looks better for
the purposes of this paper.



e for every pair of objects X7, Xo there are an object X7 x X9 and arrows 7y :
X1 X Xog — Xy, m9 : X1 X X9 — Xo, such that for every object Z and for
every pair of arrows oy : Z — Xq, as : Z — Xo, there is a unique arrow
(a1,00) 1 Z — X1 x Xo such that (a1, as) o m = ap and (a1, as) o T = @s.

In categories with finite products, we also use the standard abbreviation a; X - -+ X a,
to denote (for X; =5 V7, ..., X, =% Y},) the arrow (mj o a1, ..., 7 0 o).

In the paper by ‘category’ we always mean ‘category with finite products’ and
by ‘functor’ we always mean ‘finite products preserving functor’. Checking complex
identities in categories with products might be a little painful if the above definition
is used, however for general reasons it is sufficient to check such identities in the
category Set of sets (basically, this is due to faithfulness of Yoneda embedding and
to the fact that products are componentwise in presheaves). For instance, in order to
check the identity

{aof,y) = (7)o (B x 1),

where X -5 Y i> Z, X SN Z5, 4 one can always assume that the data involved
are just sets and functions and observe that “for every z € X”

({ao B, y)(z) = (Blal(x)),y(x)) = (B x 1) o ((a(x),¥(2))) = (@, 7) o (B x 1)) ().

We shall meet many such identities in the paper, but we shall never justify them
explicitly, we simply assume the reader realizes by himself that they are ‘true in Set’.

An (equational) theory T' = (2, Az) is just an ordinary signature © endowed
with a set of pairs of terms (‘the axioms’ of T'). We use letters ¢, u,v,... for terms
and letters z1,xs,... for variables; #(x1,...,z,) means that the term ¢ contains
at most the variables z1,...,z,. Notation ¢(ui/z1,...,t,/zy) (or simply t(u;/z;)
or again t(ui,...,u,)) is used for substitutions; when we write t(u/x;) we mean
t(z1/z1,...,u/x;, ..., on/zy). Notations like Fr ¢ = to refer to some sound and
complete deduction system (e.g. equational logic). Deciding Fr ¢; = t5 is just the
(uniform) word problem for T. In order to avoid irrelevant cases, we shall always
assume that our theories T match the following two requirements:

e  always contains a constant symbol ¢y (this is harmless, because adding a free
constant -if needed- does not change the nature of word problems);

e T is non-degenerate, namely b z1 = xs.

Given a signature ) and a category C, an Q-interpretation Z in C consists of the
following data:

- an object A in C (called the support of Z);

“Identities are generically noted 1; in some cases, we may use a subscript for their domain if we
want to evidentiate it (in the present case, we should have written 1z,).



- for every f € Q, (9, is the set of function symbols having arity n), an arrow
Z(f): A™ — A (notice that for n =0, we have Z(f) : 1 — A).

Given such an interpretation Z and a term ¢, we can define Z"(¢t) : A™ — A (to be
denoted simply as Z(t) if confusion does not arise), for every n such that z,...,z,
is a list containing all the variables occurring in ¢, as follows:

- I(z;) = mi;
- I(f(tr, - tm)) = (Z(t1), -, Z(tm)) 0 Z().

An Q-interpretation Z is a model of T = (2, Az) (or is an internal T-algebra in C)
iff for every (t1,t2) € Az, we have T(t1) = (o).

Not only categories give models of theories, they can be used as theories. This
is a basic point in categorical logic, which leads in our case to the notion of Lawvere
category. Basically this is nothing but any one-sorted (finite products) category.
Formally, a Lawvere category is a category having objects {X"},>0, in which X"
(endowed with specified projections m; : X™ — X) is the product with itself n-
times.® In our context (see below) m; will be the (equivalence class of) the variable
x;. We fix the following convention about a Lawvere category: arrows X" — X™

of the kind (m;,,...,m; ) (where iy,...,i, < n) are called
e (pure) projections iff the iy,..., i, are all distinct (in this case we must have
m < n);
e diagonals iff {iq,...,ip} include {1,...,n} (in this case we must have m > n);
e renamings iff i1,... i, are just a permutation of {1,...,n} (in this case we

must have n = m).

In order to have a clearer picture, consider the category Sf having as objects the finite
sets of the kind n = {1,...,n} and as arrows all functions (this is the skeleton category
of finite sets); for every Lawvere category T, we have a functor S : Sf°P — T
associating X" with n and (m(1), ..., T(m)) with every function h : n +— m. Now
an arrow in T is a (pure) projection iff it is the S-image of an injective function, it
is a diagonal iff it is the S-image of a surjective function and it is a renaming iff it is
the S-image of a bijection.

5Strictly speaking, one should show that this does not depend on the list z1, . . ., z, (which includes
all variables occurring in t1, t2) chosen in order to apply Z. Indeed it is so: in fact, a simple inductive
argument shows that Z"!(¢;) differs from Z"(¢;) by left composition with the n-tuple of projections

(m1,...,m). Now notice that any arrow of the kind A" (s gives the identity once

In
composed on the right with such an n-tuple of projections (one can take as a anything, e.g. A" ii)

A). Thus Z" (1) = T"" ' (¢2) holds iff Z"(t1) = Z™(¢2) holds (just take left composition with the
above mentioned arrows).

50f course, this implies that X is equal to the terminal object 1 and that X™* "2 is the product
of X™ and X"™? with obvious tuples of m;’s as projections.



Lawvere categories are essentially in one-to-one correspondence with equational
theories (we said ‘essentially’ because two equational theories differing only for the
choice of the language and of the axioms are collapsed into the same ‘invariant’
Lawvere category). We need in this paper only one side of this correspondence, which
we are going to explain. Let T = (2, Ax) be a theory; we build a Lawvere category
T in the following way. We take as arrows X" — X the m-tuples of equivalence
classes of terms containing at most the variables z1,...,z, (equivalence is intended
through provable identity in T'); equivalence classes of variables are the specified
projections and composition is substitution. Explicitly, this means that composition
of

{1}, {tm}) : X" — X™

and of
{ur}, ..., {u,}) : X" — X7

is the r-tuple of terms in the variables z1, ..., z, given by:
({ur(ti/zi)}, - {ue(ti/x)}) « X — X7

Let us now examine models; given a model Z of a theory T in a category C, we
can associate with it a functor:

(1) FI:T—>C

in the following way. If A is the support of Z, Fr(X™) = A™; if ({t1},...,{tm}) is an
arrow in T,

Fr(({ta}, - {tm})) = (Z(t1), ..., Z(tm))-
Vice versa, given a functor F' : T — C, we can associate with it the model Zr with
support F'(X) given by

(2) Ir(f) = F{f(z1, ..., 20)})

for every f € Q,. The two correspondences (1) and (2) are inverse each other, thus
we can identify models with functors.

Functors can be used also to deal with syntactic interpretations; we shall consider
only special kinds of syntactic interpretations, those which matter for our purposes.
Suppose we are given two theories Ty = (Q°, Azg) and Ty = (', Az;), such that
00 C Q! and Azg C Az. Such data induce a functor

(3) Il : TO — T4

associating equivalence classes of terms with themselves (more precisely, equivalence
class of t in T with equivalence class of ¢ in T¢). When T} is a conservative extension
of Ty (i.e. when Q°-terms are provably equal in T iff they are provably equal in T})
we write Ty C T4 for short. Notice that T} is a conservative extension of Tj iff the
functor Iy is faithful (i.e. injective on arrows). Moreover, the restriction of a Tj-model
to a Tp-model becomes composition on the left with I; (whenever models are seen as
functors under the correspondence (1)-(2)).



3 Basic Equations

We now fix our main data for the paper: we have three theories

TU = (QO,AI())
T1 = (Ql,Axl)
T2 = (QQ,AIQ)

such that T} and T, are conservative extensions of Ty and Q° = Q' N Q2 taking
(non disjoint) union of signatures and axioms we get a further theory which we call
T\ +1, To. We suppose to be able to solve the word problem for Ti,T>; in general,
as explained in the introduction, this is not enough for solving the word problem
for Ty +7, To too,” however we may look for sufficient conditions yielding a positive
solution.

The category T1 +1, T2 can be built as usual, by using terms; however we want
to characterize it intrinsically in terms of Tq, T, T2. For this it is sufficient to look
at its models. Let C be a category and let Z1,7Z> be models of T7,T5 in C restricting
to the same model of Ty; from these data it is possible to build a unique model Z of
T +71,T> in C restricting to Z;,Z,: the support is the same as the common support of
7,,7T5 and the interpretations of functions symbols can simply be joined (as they agree
on Q). Axioms Az UAzy will be all true (as they involve only terms belonging to the
same T;). Translating everything in terms of functors, we have that Ty +1, T2 enjoys
the following universal property: for every category C, for every pair of functors F :
Ty — Cand F5 : T9 — C such that I1 o F| = Iy0 F5, there exists a unique functor
F:.:T +T0 Ts — C such that JioF =F; and JooF = Iy (here I, : Ty —)Tl,
Ib: Tg—To, Ji: Ty — T4 +71, Ty, Jo: Ty — T4 +7, T are functors coming
from syntactic expansions as in (3)). Otherwise said, Ty +1, T2 is just the pushout of
Ty, T2 over To.® This purely categorical property uniquely characterizes Ty +7, Ta.

Next step consists in a direct description of a category (isomorphic to) T1 +1, T2,
by using the above mentioned universal property: for this description we do not use
terms anymore, but a more algebraic notion, namely mixed paths of arrows from
Ty, T2. To make the notation simpler, we act as functors Iy, Is (which are faithful)
were just inclusions. Formally, a path K : X” — X™ is a non empty list of arrows
coming from either Ty or T2 (or both)

Kzal,...,ozk

such that

"Notice that Ti 47, T» might not be a conservative extension of T1,Ts: for instance, both Boolean
algebras and Heyting algebras are conservative over distributive lattices with 0 and 1, but putting
together the two theories one gets again the theory of Boolean algebras which is obviously not
conservative over Heyting algebras.

8In relevant contexts, a 2-dimensional pushout should be considered instead: it corresponds to the
theory of pairs of models of T, T>, endowed with an isomorphism among their respective reducts.
2-dimensional aspects could be conglobated with some further work in the approach of this paper.



(i) the domain of «; is X™;
(ii) the codomain of ay is X™;
(iii) for every i = 1,...,k — 1, the codomain of «; is equal to the domain of a;y1.

Paths are just words (with ‘typing’ restrictions). Equivalence relations on paths
(stable with right and left concatenation) can be introduced by two-side rewrite rules.
The plan is quite simple: identify such rules, orient and complete them into a
canonical rewrite system (after all, the situation is very similar to string-rewriting
systems for monoid presentations).

In the remaining part of the paper, we make the following conventions:

e we shall use letters «, 3, . .. for arrows from T¢ U T, letters o', 81, . .. for arrows
from T, letters o2, 52, ... for arrows from Ty and letters o, 5%, ... for arrows
from Tg; notice that any arrow like o' may happen to come from Ty, the vice
versa however cannot be;

e instead of indicating types (i.e. objects of Lawvere categories) with X" X ...
we may use letters Y, Z, U, ... if the knowledge of the exponent does not matter;
letter X however can only indicate X!;

e roman letters can be used to indicate arrows having codomain X, that is a'

for instance, stands for an arrow in Ty (which might belong to T too) having
domain some Y = X", but whose codomain can only be X = X'

Next, we give main definitions for path rewriting. Let S be a set of pairs of paths;
we write

(i) K =s K' (or simply K = K’ leaving S as understood from the context) iff
K =K;,L, K5 and K' = K1, R, K, for some pair (L, R) € S;

(i) K ©s K' (or simply K < K') iff K = Ky, L, K2 and K' = K, R, K5 for some
pair (L, R) such that either (L, R) € S or (R, L) € S;

(ili) K =% K' (or simply K =* K') for the reflexive-transitive closure of =g;

(iv) K &% K' (or simply K <* K') for the least equivalence relation containing
=S-

Clearly <* is the least stable equivalence relation extending S. Pairs (L,R) € S
will be directly written as L = R and called rules of S; alternatively, they might be
written as L < R (and called basic equations of S), but in such a case we tacitly
assume that S is symmetric, i.e. that S contains (R, L) in case it contains (L, R) (in
such a case e.g. relations = and < obviously coincide).

Next theorem accomplishes our first goal (‘finding appropriate basic equations’):



Theorem 3.1 Let P be given by the following two kinds of pairs of paths:
o, Bleatof (i=1,2)
I Xy, x1E& o X1,1 Xay
(where in the last pair we have
a1 YT — 744 ag Yy — 7y

and so
I1Xay: Y] XYy — Y] X Zy

a1X1:Y1XZQ—>Zl><ZQ).

We have that T1 +1, T2 is isomorphic to the Lawvere category having as arrows the
equivalence classes of paths under the relation <.

Proof. Let P be the category having {X"},>0 as objects and as arrows X" —
X™ the equivalence classes (wrt <*) of paths of domain X™ and codomain X™.
Composition of {K} and {L} is {K, L}. Identity of X™ turns out to be just {1xn}.

We first show that P has finite products. X° = 1 is obviously terminal; in fact
any path K : Y — 1 is equivalent to the singleton path ( )y by iterated applications
of the first basic equation of P (last member of K must be some ( )z, so it composes
with the last-but-one member giving again something of the same kind, etc.).

Given objects Y1 = X™ Yy = X2, we take Y] x Y3 (i.e. X™17"2) ag binary product
and {7y, },{my,} as projections (here 7y, ,my, are obviously the projections in Ty).
Let us now take two paths Ky, Ko of domain Z and codomains Y7, Yo, respectively.
Suppose for instance that

K1:a17"'7ar K22617"'7BS'
Let (K7, K3) be the path:

Kix1
720 75 7728 7wy, " v x

where 17 x Ko is (17 x 31),...,(1z X Bs) (K1 X ly, is defined analogously). We show
that {(K7, K2)} enjoys the universal property for pairs. In fact

(12,1z2),(1z x K2),(K1 X 1y,),my; & K}

by successive applications of the first basic equation of P (we have (a, X ly,) omy, =
Tdom(ay,) © Qs €tc. so we finally get (17,12), (17 X Ka2), Tgom(a,)s K1 ©* K1, because
dom(a1) = Z and for every j, (17 x ;) o mz = mz). Similarly

(12,1z2),(1z x K2),(K; X 1y,), 1y, & K

10



(by the same passages in different order).

Let now K be another path from Z into Y; x Y such that K, 7y, &* K; and
K,my, &* Ky. We must have K = K', (y1,72), for some (y1,72) : U — Y1 X Yy;
so K',vy &* Ky and K',y9 &* K. From this, a glance to the shape of our basic
equations® yields (K’ x 1y,), (71 X ly,) ©* (K X 1ly,) and (1z x K'), (17 X 72) <*
(1z x K3). Consequently

(K1, Ks) " (12,12),(1z x K'), (17 X 72), (K" X 1y,), (71 % 1y,).

We only have to show that this last path is equivalent to K = K', {y;,v). If K' =
d1,...,0;, by repeated applications of the second basic equation (first basic equation
is also used e.g. in contracting (1 x d;), (6; x 1) into d; X d;), we have that

(12,12),(1z x K'), (12 x 72), (K" X 1y), (71 X 1y,) & (12,12), (K’ x K'), (71 X 72)

(where K' x K' is (01 X 81), (02 X &2),..., (8 x d;)). Finally, observe that (17,17) o
(61 % 01) = 01 © (Leod(sy)» Leod(sy))s €tc. hence repeated applications of the first basic
equation yield

(K1, Ks) & K'.(1y,1p),m1 xv2 & K',(71,72),
as wanted.

In order to check that P is isomorphic to Ty +1, T2, we show it enjoys the related
universal property. Functors

F,:T;{ —P Fy: Ty — P

associating with o the equivalence class {a'} obviously commute with the inclusions
I : Ty — T and I : To — To. Now let Gt : Ti—>C (’L = 1,2) be such
that Iy o Gy = I o Go. There is in fact a unique functor G : P — C such that
Fi oG = G and Fy o G = G5: it is the functor associating with {azf, .., af} the
arrow G, (@) o---0 Gy, (aZ’“). This definition is forced by the conditions 1 oG = G,
and F5 o G = G5 and is good because basic equations of P express identities holding
in any category with finite products. This completes the proof of the theorem. -

9For the case of the second basic equation, you need identities like 1y X (0 x 1z) = 1y x § X
1z = (1y x §) x 1z, which hold in Lawvere categories (in fact, if e.g. ¥ = X", Z = X™ and

§={d,...,dr,) : X¥' —s X*2 then unravelling the definitions the three members are all equal to
(1, oy, mody, ..., TOdiy, Tnthky+ly---> Tnthky+m),
where m = (mn41,...,Tntk,)). The point is that in Lawvere categories the finite product structure

is freely generated (actually by one object); this is usual for categories coming from syntactic calculi,
however in the general context of arbitrary category with products such identities hold only up to
(coherent) isomorphisms.

11



In the applications, we should keep in mind that the isomorphism of categories
among Ty +7, T2 and P is the unique expansion to the signature Q' U Q? of the
models F| : Ty — P, F, : Ty — P associating with o’ the equivalence class {a'}.
This means the following: given an Q'UQ?-term ¢, the universal model (isomorphism)
U : Ty +1, T2 — P interpretes it as the equivalence class of any path obtained by
expressing t as an iterated composition of terms which are pure, i.e. which are either
Q! or Q%-terms. Such a path (called a splitting path for t) can be effectively computed
from ¢ in many ways (possibly yielding not the same path, but yielding in any case <*-
equivalent paths); one might for instance adopt usual abstraction of alien subterms, or
alternatively make use of the following simply described inductive procedure (which
applies to any tuple t1,...,t, of terms having variables included in some fixed list

Tlyenry Tim)t

- ift1,...,t, are all Q' or O%-terms, a splitting path is the singleton path

{t1} - {tn})

having domain X™ and codomain X™ (recall that arrows in Ty, Ty are equiv-
alence classes of terms under provable identity in the corresponding theory);

- otherwise, we have e.g. that t; = f(uq,...,ux); a splitting path K of
tla"'atiflaula"'7uk7t’i+17"'7tn

is given (we apply multiset induction on term complexities) and it has codomain
X4k 50 we can take

K’ <{$1}7 ety {f(a:u s a«TiJrk)}a Tt {xn71+k}>

as a splitting path for ¢1,...,¢,.

It is now clear how we can deal with word problems: to decide whether ¢ and u are
T +1, Tr-equal, it is sufficient to split them into paths K and L according to one
of the above mentioned procedures and then check whether K <* L holds or not.
Of course, this will become convenient only after turning our basic equations into a
canonical rewriting system. Let us see in any case an example.

Example Let us prove the well-known fact from elementary algebra saying that
it is not possible to endow a given distributive lattice with 0 and 1 with two different
Boolean algebra structures (the complement, in case it exists, is unique). Let T be
the theory of distributive lattices with 0 and 1 and let 77,75 be the theory of Boolean
algebras. We show that

FT4py e 1% = 121 A T2y
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(here —; is complement in T;, what we prove is =127 < —9z1). We take X 2 x
as splitting path of =121 (we usually drop brackets in the examples, to be precise we

should write X {E;} X); as splitting path of —yz1 A =2z, we take

x T w2 mAmyee ¢

Notice we could have used

T1,72% = A
X<1 21>X2 1TIATY 5

istead: indeed the two paths are <*-equivalent (just expand (=121, 21), 21 A =29 to
(x1,21), (7171, T2), (T1, "922), 1 A T2, then apply second basic equation and contract
once again). We need to show that

—1z1 &F (—1z1, 1), L1 A\ D9xs.
For this, let us consider the path
K = <—|1I1, 271), <I1,$2,I1 A ,’172>, I A (—|2:1:2 V Ig);
We have
K & (‘|1$1,$1>, W ATVAN (—ng Vv (171 A xg)) & MT
because {z1 A (-2z2 V (z1 A z2))} = {z1}. On the other hand
K & (=z,z,010 Az), 21 A (meze Va3) &

= <—|1I1,I1>, (271,,’172,0), 1 N\ (—|2:1:2 V Ig) =
& (miw1,z1), 21 A 9T

In conclusion, we have
1T <=>* K <:>* <—|1I1,$1>,I1 N —919

as wanted. -

Notice that in the above example we sometimes replaced terms from Qf (i =
1,2) with terms from Q°, when we realized this was possible. Such passages are
indispensable in order to activate the first basic equation (which applies to consecutive
equally coloured terms), but they might be non effective. The additional hypotheses
we shall make on our data in order to be able to orient and complete basic equations
into a canonical rewrite system will also be sufficient in order to make such passages
effective.

13



4 Orientation

Before beginning orientation and completion, we make a modification to our ‘dataty-
pes’, due to the fact that we do not want to bother distinguishing paths which are mere
alphabetic variants each other. Formally, the involved definitions are the following (let
K be the path Vi 2% ... 2% ¥, and let L be ‘parallel’ path ¥i 25 ... P& v, 0,
with «;, §; equally coloured and having the same domain and codomain):

e K is said to be a p-renaming of L (where p = {p; : Y; — Yj}1<i<p41 is a list
of renamings)!? iff the following squares

Q;

Y; Yita
Pi Pit+1
Y; 7 Yita
commute for i = 1,...,k (otherwise said, we have 3; = pi_1 o a;o p;yq for all i);

we write L = p(K) in order to express that L is (the) p-renaming of K;

e K is said to be the p-alphabetic variant of L (where p = {p; : Y; — Yiti<i<kt1
is a list of renamings) iff it is the p-renaming of L and moreover p; = ly,
and pgi1 = ly,,, (the reason for this definition is that variables in internal
equivalence classes of terms in a path are considered bounded).

Example. For every permutation o on the n-elements set, we have that path
Ky, {(a1,...,an),a, Ko
is an alphabetic variant of the path

Kl, (aa(l),. .. ,ag(n)), (71'071(1), s ,71'071(”)> o, KQ

(here Ky, Ky might be empty). Thus applying alphabetic variants allows permuting
the components of an arrow in a path (provided such arrow is not in last position).
_|

Example. Path

Wy x 25Uy w7 Ko

0Recall from Section 2 that a renaming X™ — X" in a Lawvere category is an n-tuple of
projections of the kind (7, (1), ..., Ty(n)), Where o is a permutation on {1,...,n}.

14



is an alphabetic variant of the path

Kio{my ,m7,my TY T 72, )O0,T 7
( ) (( ) )

W Y xUxZ AN

(here only Ky might be empty and K o (my, 7z, ) is Ky with last arrow composed
with (my, 7z, 7). Thus applying alphabetic variants allows assuming that certain
projections (located not in first position) project, say, on last components of their
domains. -

The content of the last two examples will be frequently and tacitly used within
the technical Sections of the paper.

We shall apply rewriting on equivalence classes of paths modulo ‘being an alpha-
betic variant of’. This needs some additional conventions on our rules, because we
want to have the following property (making the rewriting process easily manageable):
if K rewrites to L, then any alphabetic variant of K rewrites to some alphabetic vari-
ant of L. In addition, notation of certain rules may be awkward in case we do not
stipulate anything about their alphabetic variants. Consequently, we stipulate that
the renaming of any rule is always tacitly supposed to be available as a rule: by this,
we mean that if K = K’ is a rule, then p(K) = p/(K') is also a rule, for any list p, p’
of renamings such that first and last components of p, p’ are respectively equal.'!

A consequence of the above stipulation is that the normal forms we eventually
obtain, will be unique only up to alphabetic variants. Checking whether two paths
are alphabetic variants each other, in case we know they are both in normal forms,
does not substantially affect efficiency, given the particular structure of normal forms
(we shall turn on that in Section 10).

Before going on, we need another preliminary indispensable decision about our
datatypes. As evidentiated also in the example at the end of Section 3, terms like
f(t1,t2), where f € QO and where ¢;(;) is a pure Q'-term, have (at least) two different
splitting paths, namely

x @) 2 JoLte(e)) e gnq o x ) 2 Sl

Our final aim is that of having (uniqueness of) normal forms for paths, so we must
decide once for all which one has to be considered in normal form. This choice is
clearly conventional, but has to be done one way or another: we choose the former
path. This yields to the following notion: say that a path is well-coloured iff it has
the form K, a? (where K is possibly empty). This means that the last arrow in a
well-coloured path must come from T2 (which does not exclude it might come from
Ty as well).

We modify our basic equations so that we need to consider only well-coloured
paths. For a path K : Y — Z, let KT be the well-coloured path K, 1.

We shall of course always deal with rules K = K’ such that K and K’ agree on domains and
codomains. Thus, our convention says that p(K) = p(K') is a rule in case K = K' is a rule,

p=A{p1,-,pn}, o ={pt,..., P} and p1 = py and pn = py,,.
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Let us reformulate our basic equations as follows:
(E1)' o',8'y & a'oply
(E1)? 2,82 & a?0p?
(EQ) IXxag, a1 x1,8 & ap x1,1Xa, f.
These new equations do not allow to rewrite a well-coloured path into a non well-
coloured path; notice also that the ‘interchange basic equation’ 1 X as,a; X 1 &
a1 X 1,1 X as now does not apply anymore in the last position of a path.
As we said, we shall only consider from now on only well-coloured paths subject
to the new basic equations (E1)*,(E2).'2 There is no loss in that because for well-
coloured paths K, L, we have K <* L (according to the old basic equations) iff

K <* L (according to the new basic equations). In fact, one side is trivial; for the
other side, let us consider a <-chain like

K=KiyeKi & ---&K,=1L
obtained according to the old basic equations. We thus have
Kt=Kf e K 'e .- KH=L"

according to the new basic equations; now two applications of (E1)? yields K < K+
and L < LT because K, L are well-coloured. Thus K <* L holds by using the new
equations too.

The obvious orientations of (E1)', (E1)? are

(RY) ol,Bl,y = aloply
(RZ) a?, 52 = ao?o B2

Orientation of (E2) depends on the colour of 8. In case  has colour 2, we orient it
as follows (supposing as has colour 2 t00):

(R2)* Ixas, o x1, 6% = ag x1, (1 xa3)op?

where second member has been reduced by a further (R?)-rewrite step. In case 3
has colour 2, there are no other relevant cases. If a1, as have both colour 1, the two
members are joinable by (R.) and the equation can be deleted.'® If ay has colour 1
and «q has colour 2, we do not need to add the rule

2 x1,1xad g% =1 xal, (af x1)o B>

120f course, this means also that, when computing the splitting path of a term, identity should be
added at the end in case the top symbol of the term has wrong colour.

13We tolerate the use of (Rf,)* in case a1, @z both have colour 2. As a general philosophy, we prefer
not to put provisoes on applications of rules, unless needed. So, for (Rf,)* (and (Rzl,)* below), the
only proviso is that first and third arrow in first member must be equally coloured.
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because this is simply a renaming of (RIQ,)* and our convention about renamings
automatically includes it. Notice that (RIZ,)* applies also in case 8 € Tg (the fact
that £ has colour 2 does not prevent it from belonging to Ty).

In case 8 € T1\To, both members of (E2) cannot occur in last position of a
well-coloured path; taking into account this fact, the appropriate oriented rule is

(R})* Ixa, arx1, 8y = a; x1, (1 xap)ofl, y

Although, strictly speaking, we do not need such a rule in case f € Ty (because
orientation in this case is like in (R2)*), we allow its use in this case too.

Duripg next section completion process, rules (R;,)* will be removed, whereas the
rules (R.) (called composition rules) are permanent (whenever a rule is deleted during
completion, we always mark its name with a *).

Let us summarize the content of this section. We call R* the rewriting system
given by the rules

(RY), (R2), (RL)", (R2)".

R* is our starting rewriting system: this system is sound and complete for our pur-
poses (deciding path equivalence according to system P of Theorem 3.1), because the
above discussion shows that

Lemma 4.1 For well-coloured paths K1, K3, we have K1 <% Ko iff K1 ©%. Ko.

5 Completion

System R* is clearly inadequate because it is far from being confluent, so we shall
modify it by using Knuth-Bendix style completion as an heuristic guide.

Let us recall some general notions concerning a rewrite system S (these notions
can be formulated within the context of abstract rewrite systems as in [2]). System
S is said to be:

e terminating iff there are no infinite reduction sequences

Kl :>SK2 :>SKZ =g -

o confluent iff K =% K; and K =% K, imply that K, Ky are joinable (i.e. that
there exists Ky such that K; =% Ky and Ky =% Kj);

e locally confluent iff K =g Ky and K =g Ky imply that K, Ky are joinable;

e canonical iff it is terminating and confluent iff (by Newmann’s Lemma) it is
terminating and locally confluent.
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It can be shown (see [2]) that in a canonical rewriting system S the relation K; &% K»
holds iff Ky and K> have the same normal form, which is moreover unique (a normal
form for L is some L' such that L =% L’ and there is no L” such that L' =s L").

In order to prove canonicity of our path rewriting systems, we show that they are
locally confluent and terminating; local confluence is, in its turn, easily reduced to
the fact that critical pairs are all joinable. We recall that a critical pair is any pair
of paths obtained as follows

L17M7L2

/N

Rl, LQ L 1, RQ
where M is non empty and
Li,M =Ry and M,Ly; = Ry

are both rules of the system (we say in this case that such rules superpose).

In case some critical pairs are not joinable, the obvious thing to do is to enrich the
system by adding it such oriented critical pairs as new rules. In addition, experience
shows that it is better also to simplify - if possible - rules which are generated from
the procedure. The following operations concerning a rewrite system S are in order:

(i) we can add to S a set of new rules {L; = R;}; such that (L;, R;) or (R;, L;) is
a critical pair generated by rules in §;

(ii) we can divide rules in S in two disjoint groups &’ US” and remove all rules in
8" in case we realize that left and right member of such rules are joinable in S’;

(iii) we can divide rules in S in two disjoint groups S’ U S” and replace any rule
L= Rin S" by some L = R’ such that R =%, R'.14

Clearly if S8’ results from S after a finite number of applications of (i)-(ii)-(iii), we
have that S’ is equivalent to S (in the sense that we have K| &% K iff K; &%, K»).
If we are lucky, we can produce in this way a canonical rewrite system S’ starting
from a given §. Notice that the above completion procedure - as it is formulated here
- only has heuristic value (it cannot be fully mechanized as each step in (i)-(ii)-(iii)
may consist in infinitely many operations).

Let us now apply completion to R*. The first obvious superposition we have in
R* is obtained by considering rules (R!) and (R2) as in the fork:

"We shall not need left member simplification steps.
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ai?ﬁ()? a]
(Rz/ \Rz)
aio ), ol of, B0 o

(with i # j and possibly with a v appended everywhere to the right in case j = 1).
Any naif global orientation of these critical pairs in one sense or in the other, would
immediately cause infinite rewriting. Orientation from left to right o’ o %,/ =
o', 3% 0 af would produce for instance (let o have codomain Y and let 8 have domain
Y):

a,f = ao(ly,ly)om, 8
= ao(ly,ly), mof = ao(ly,ly)o (lyxy,lyxy)omi, mof
i P

where m : Y xY =Y and n] : (Y xY) x (Y xY) — Y x Y are first projections.
Critical pairs

(CP) (@, 8%0a 5 a'opal)

will be differently oriented, depending on the nature of the arrow 8°. In case the
signature Q° is empty, the solution is the following couple of rules:

(Rpr)* o, moal = alom, ol

(Rdi)* o'o0d,a! = o, §oal

where 7 is any strict projection and § is any strict diagonal !> (a projection - resp.
diagonal - is strict iff it is not a renaming). Given that any 8° factors as 7 o §, where
7 is a projection and § is a diagonal, this pair of rules is sufficient to make all critical
pairs (CP) joinable, if Q° is empty.

In our case, we cannot suppose ¥ to be empty, however we can try to identify two
different classes of arrows in Ty forming a factorization system; arrows in the first
class will be associated ‘to the left’ and arrows in the second class will be associated
‘to the right’, as in the case in which Q° is empty. There is a standard notion of
factorization system in category theory (see [6]), however such a notion is too strong
in the present context, so that we weaken it.

Let C be any category; by a weak factorization system in C, we mean a pair of
classes of arrows (£, M) from C such that:

(i) both & and M contain identities and are closed with respect to left and right
composition with arrows in £ N M;

5Recall from Section 2 that we call projections (resp. diagonals) arrows X" —3 X™ which are
m-tuples of distinct m; (resp. m-tuples of 7; including all the m1,...,m,).
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(ii) for every o € C, there are € € £, u € M such that a = ¢ o y;
(iii) whenever we have a commutative square

€1

Yo Y;
€9 M1

Y, Y

2

withey,e9 € &, 1, po € M, there is a unique p € ENM such that egop = €1 and
po 1 = peo (this condition says that the factorization given by (ii) is essentially
unique).

;From the above axioms it follows that arrows p € £ N M are invertible (because
they have two trivial factorizations, namely p o 1 and 1 o p, hence...); such arrows
will be just renamings in our cases. Notice that we do not ask for £, M to be closed
under composition, not even that they contain isomorphisms and are ‘orthogonal’
each other (like in standard factorization systems).

Main Example. For any equational theory T = (Q, Az), the corresponding
Lawvere category T always has a weak factorization system (£, M) (which we call
the standard weak factorization system for T):

e arrows in £ are just projections;

e arrows in M are those « such that in case it happens that @ = ¢ o o' (with
¢ € £), we must have that ¢ is just a renaming.

The factorizations o = a. o o, (with o € &, o), € M) are obtained as follows. Let
f(xl, ...,y) be a tuple of terms containing at most the variables z1, ..., z,; say that
this tuple is n-minimized iff for no i = 1,...,n we have bp £ = (co/z;).'® Now we
have that the m-tuple of terms & is n-minimized iff the arrow o : X™ —s X™ belongs
to M, where « is the vector of the equivalence classes of terms represented by the
m components of ¢ (if, say, £ = (t1,...,tm), then a is ({t1},...,{tm})). Suppose
in fact on one side that we have o = ¢ o o/, where ¢ : X — X* is the tuple
(miys ..., ); as such a tuple is a strict projection, the i; are all distinct and some
s = 1,...,n is missed. Let o be formed by the equivalence classes represented
by the terms t_;(xl, ...,x}); the relation o = € o o/ means that Fp i(z,...,2,) =
zf_;(xil/xl, ...,z /zr). Replacing 2 by the constant cg, we get

-,

Fr i(co/xs) = (iy, ... x5, ), hence Fpi(co/zs) =1

$Notations like b @ = &, for @ = (u1,...,um) and & = (v1, ..., vm), mean that Fr Njoi wi = vj.

Recall that in Section 2 we assumed that there is at least one ground term co in our signatures.

20



contrary to the fact that ¢ is n-minimized. Conversely, if # is not n-minimized, we
have Fr #(co Jzs) = ¢ for some s, hence a admits a factorization through the proper
projection (my, ..., Mg 1, Tg1y--.,Tp).

We so established that o : X™ — X" belongs to M iff it is represented by some
n-minimized vector of terms. Let now « be arbitrary; how can we get the factorization
a = oz o oy, where o, € £ and o, € M7 This is easy: take any vector of terms in
the equivalence classes of « containing a minimal set of variables: if such a vector
is iz, ... ,Tj, ), then the factorization is o = (m;,,..., 7, ) o B, where § represents
the vector of terms f(xl, ...,xy). Notice that this process is effective in case word
problem for T is solvable: one takes any # representing o and then go on by replacing
variables in it by co; the procedure stops when only terms not provably equal to ¢ can
be obtained.

Next we show that the above factorization is unique up to a renaming. Suppose
we have a commutative square in T

xm i» Xl
€1 W2

XkT’Xn

with 1,69 € € and py, ue € M. For the sake of simplicity, we can apply a suitable
renaming to X" so that we have ey = (my,...,m) (i.e. €1 projects on first k& com-
ponents) and e = (7j,,...,7;,); NOW i1, e must be represented by &, [-minimized
vectors of terms ¢7,¢5. The commutativity of the square says that we have

Fr t_{(Ila"'aIk) = tg(le?“"Ijl)‘

By minimization, we must have {1,...,k} = {j1,...,7} (otherwise, one can ‘reduce’
variables in ¢ or t9 by replacing them with ¢p); this means also that k = [. Now the
renaming (7;,,...,mj,) X* — X* fills the ‘bottom-top’ diagonal of the square

XkH _ &2 Xk

€1 W2

(and is the unique such), as wanted. -

Using the above described standard weak factorization system (which we conve-
niently call (£y, My)) available in Tq, we can replace rule (Rdi)* by the following
one

(Ry)* dop, o = o, podd  (ue M)
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which is stronger than (Rdi)* because diagonals always are in M, (they cannot be
factored through a strict projection or, to say it differently, they always are repre-
sented by minimized vectors of terms). As rule (Rpr)* is kept, the effect of rules
(Rpr)* and (R,)* is that all critical pairs (C'P) are now joinable (because 3° can
be factored as 2 o ,62, with 82 € & and 52 € M,). Apart from evident problems
concerning the effectiveness of applicability of rule (R,)*, this is still bad because it
may once again produce infinite rewriting. This is especially evident in case Tj is not
collapse-free. Suppose for instance we have a collapsing equation like f(z1,z1) = 71
in Tp; then if we start with the path zq,#(z1) (where #(x1) is any term), we can
decompose =1 as (x1,x1) o f(x1,x2), thus producing the following rewrite steps:

(Il,I1> Of(:l?l,IQ), t(:l?l) = (:l?l,:l?l), t(f(:l?l,IQ)) = Ty, (517175171) Ot(f(Il,il?Q))

yielding again z1,%(z1). We cannot overcome this problem without postulating any-
thing (after all, combined solvable word problems might be unsolvable...). We shall
postulate that there is a canonical way of extracting My-components from terms in
Q' (of course, we shall also have to assume that such extraction can be done in an
effective way, see Section 10).'” This extra assumption will restrict rule (R,)* (or, to
put it in a different form, will allow the completion/simplification process to get rid
of undesired instances of rule (R,)*). We need first to come back once again to the
abstract categorical framework.

Let C to be a subcategory of C’ and let (£, M) be a weak factorization system in
C. A weak factorization system (&', M) in C’ (notice that M is the same!) is said
to be a left extension of (£, M) iff the following hold:

e £'NC=¢;

o ifej,eo € £ andife € &' thenejoe € £ and eoey € ' (whenever compositions
make sense).

Notice that this implies that £ - not necessarily £’ - is closed under composition. Let
us say that T; is constructible over Ty iff in T; there is a left extension (&;, My) of
the standard weak factorization system (&y, My) of Ty.

Assumption. We assume that T1, Ty are both constructible over Ty.

We postpone to Section 10 a symbolic translation of this assumption as well as the
analysis of some examples (and counterexamples). For the moment, let us underline
that, as an effect of the above assumption, we now have that any arrow o' admits
two factorizations, namely:

'"The assumption of [3, 4] may be seen as the stronger requirement that there is a maximal way of
extracting Mo-components (such stronger requirement is incompatible with existence of collapsing
equations in Tp).
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e it can be factored as a’oal, according to the standard weak factorization system
(o, M;) of T; (we recall that here & is formed by arrows which are projections,
whereas M; is formed by arrows represented by minimized -in the sense of the
theory T;- vectors of terms);

e it can be factored as of o o, according to the left extension (&;, M) of the
standard weak factorization system of Tq (here the class &; is axiomatically
given by the above Assumption, whereas M, is the class of arrows from T
represented by minimized vectors of terms -in the sense of the theory Tp).!8

Rules (Rpr)*, (R,)* are so restricted:

(R.) o, = aiodl,

(R,) ool = o, aioaj
and called e-eztraction and p-extraction rules, respectively.'? Let us call Ry the
rewriting system formed by rules (R}), (R.), (R,); in Section 6 we shall prove that

Theorem 5.1 R is canonical.

As an effect of the above Theorem, rules (Rpr)*, (Rdi)*, (R,)* are all canceled
during completion/simplification process (because their members are joinable in Rg);
we shall nevertheless artificially postpone cancellation of rules (Rpr)* and (Rdi)* at
the end of the completion, because we shall make further use of them in order to
identify the good superpositions/simplifications steps needed to treat the remaining
rule (R;f,)* (which causes some further confluence problems).

In fact, in order to finish our completion process we need only to identify a couple
of very specific superpositions yielding the right modification of the rule (R;f,)*

(R;;)* 1 x ab, a{xl, B = ol x1, (1 xab)of

(recall that in case i = 1, there is an extra arrow to the right of both members).?

Let us consider the path

(731 Ly, xaj ol xly i
Y, . Y1 XYy 1—)2Y1XZ2 1—>2Z1XZ21)U

giving rise to the superposition (among rules (R’) and (R;,)*)

18 These vectors of terms are also n-minimized in the sense of T}, given that T} is conservative over
To.

9Tt goes without saying that such rules do not apply in case of trivial factorizations (i.e. when
al -resp. afL— are, up to a renaming, just identities). We allow applying the rule also in case i = j
(although in principle this is not needed).

20Recall from Section 4 that we allow j to be different or equal to .

23



(¥, 1), 1 x ab, o x 1, §
(Ri) (RL)*

(v 0h), of x 1, 6 (7', 1), of x 1, (1 x ah) o f'
The related critical pair is oriented as follows:
(By)" (7, 0h), of x 1 B" = (7' 1), of x 1, (1x a) o
We need another final superposition (among (R)* and (Rdi)*): consider the path

(here o/ : Y] x Z — Y3)

Oijxlz

Yy 2y wzxz % vy w2z Pu
and the superposition

<7116116’i>1 aj X 1Za /BZ
(Rdi)* (R)*

<7i75i>7 (aj77TZ>a IBZ <7i75i71Y>7 o X ]-Ya (1Y2 X 52) OIBi

where we used the fact that (v%,46,0") = (7%,6°) o (1y; x Az) (Az is the diagonal
(17,17)) and the fact that (1y; x Az)o (af x 17) = (ad,nz) (77 is the projection
Y1 X Z — Z). We are near to the end of the completion process; we first reduce the
second component of the above critical pair by using two (Rpr)*-reduction steps:?!
suppose that §° : Y — Z has factorization

5t 5t
Y 5y 2 7,

then we have o , ) )
(70" Ly ), 0f X 1y, (ly, x §*) o B
U
<7ia6ia 1Y>7aj X 6?97 (1Y2 X 6:71) o IBZ
Y
<7i75i752>7aj X Ly, (1Y2 X 5;71) o Bl

21 This reduction is important: without it, we may have problems in the termination proof.
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So our final products rule is

(R;) <7i75i>7 (aja 7TZ)HBZ. = (72751752% o x Ly, (1Y2 X 5;71) Oﬁi

(recall we have an extra arrow to the right in both members in case i = 1). Putting
types, first member is

(1) y vz v, w7z By

whereas second member is

v ,6 gt al X1y (Ly, X 8%, )0
( <) o Xy 2

(IT) Y YixZxY Yy x Y'
We add a proviso for this rule: 6 ¢ & (that is, 6 cannot be a projection). The
reason for this last proviso is that, in case 0° is a projection, then the second member
of (R,) can be re-written to the first by using rule (Rdi)* (thus causing termination
problems). In fact, in case ¢’ is a projection, we have that ¢’ = 6. and §}, = 1z,

hence the second member is (v, 6%, §%), &/ x 1z,5" and we can rewrite it as follows
<7i76i36i>7aj X ]‘Z’IBi = (72762> o (1Y1 X AZ)aa’j X 1Z7/Bi = (Pyia(si% <aja7TZ>aIBi

thus getting the first member. To finish, we observe that rules (R})* and (R})* can be
removed, because their members become joinable in the rewrite system R obtained
by adding (R;;) to Ro. We check it for the former rule, leaving the latter (which is
treated in a very similar way) to the reader.

First member of (R;)*

\TTY: a <7TY1 a1,7TZ2>

Y x Y, ™My 7 7% 2 25U
whereas the second member is

od X1y, (17, xa?)op?
Y xYs 1—>221><Y2 1—>

Applying a (Rpr)*-rewrite step to the second member, we get (suppose that Y5 LN

(%) o] X 1y, (17, x @) 0 ' = of x al, (17, x o) o B"

Let us now operate on first member by successively using rules (Rl) (Rpr)*, (R%) as
follows (to apply (RZ), notice that 7y, o &' = (7y, o @) o &/, , so by uniqueness this
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is the factorization of 7y, o o/ in the standard weak factorization system of Tj;):?2
<7TY177TY2 ° O‘Z)a (WYI © ajla 7TZ2>7 IBZ
bemy)
(Tyi, Ty, © @', Ty, © @), (Ty; © Cl‘]1> X 1Y2’7 (17, X o) 0 B

(Ty;, Ty, © a’iaﬂ'Y2 °© aé)a <7TY137TY2’> °© (ajl x 1Y2’)a (1z, x O‘;n) o 3
U(Rpr)*

<7TY117TY2 ° O‘iaﬂ'Yz ° a?—:) ° <7TY1’7TY2’>1O‘{ X 1Y2’a (1Z1 X a’:n) o /82

(Ty:, Ty, © Cl(é>,0(]1 X 1Y2’7 (17, x ain) °© IBZ

| bimi)

o) X al,(1z, x al)) o

as in (*). In conclusion, we obtained the rewriting system R which is described by
Table 1 (in the last two rules of the Table, Z,Y’ and Y, are the codomains of %, §¢
and o/, respectively, as in the fully displayed paths (I) and (II) above).??

Recall that renamings of rules of R are available as rules of R. However, such a
convention can be slightly simplified, given that the above rules are all closed under
the operation of composing first (or last) arrow in each member by the same single
renaming. Thus we can merely stipulate that if L = R is a rule, then L' = R’ is
also a rule, where L' is any alphabetic variant of L and R’ is any alphabetic variant
of R.

The content of the present section can be so summarized (recall that R is obtained
from R* by few completion steps):

Lemma 5.2 For well-coloured paths K, Ko, we have K1 &% Ko iff Ki 5. Ks.

*’If a; is a projection, rule (R.) does not apply, however in this case 1z, x ai, is the identity,
al = a' and a single (RY)-rewrite step reduces the first member as in (*).

**Notice the following subtility concerning rule (R}) (a similar observation applies to rule (R})
too): paths o', 8° and a' o 8% are well-coloured in case the composed arrow a' o 8° collapses to an
arrow from Tyo. In this case, rule (R.) does not apply, but the two paths are nevertheless joinable by
eliminating peaks from the following <% -chain (according to the instructions given in the confluence
proof):

atoB’<=atop®1<at,8%1=at, 8%
The point behind that lies in the above mentioned properties of left extension of factorization systems:
if o' o B8° collapses, then (af o (a‘lL 03%.)0 (ozllL o B%), is, by uniqueness, the factorization, in To as
well as in T1, of the arrow a' o 3%, hence we have

a8 = ag,ap 083 a0 (a0 %)z, (@ 0 87 = (a0 (a0 8°):) 0 (g 0 87)u = @ 0 5°

where last passage is now correct (it is an (R2)-step applied to arrows from To).
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&

al,Bly=aloply

Rz a?, %2 = a? o 32
R
R,) o, = aeau0f

—~ —~ —~ —~ —~
—

)
)
c) o= ao0p,fn
)
)

(71751>7 (0[, 7Tz>,,61,9 = (71,(51,(52%0[ X 1Y’7 (1Y2 X 57171) 05170
where 6! & &

(R]%) (72752>7 (0[, 7Tz>,,62 = (72752752>7a X Ly, (1Y2 X 5?)1) 0162
where 62 &€ &

Table 1: The system R

In Section 9 we shall prove our main result, namely that

Theorem 5.3 R is canonical.

6 Local confluence, 1

In this section we will prove the canonicity of the system Ry which, we recall, is the
system described by Table 2.

&

ol ,Bly = alofly
O‘42”32 = O‘420/32
a,B = aof:,fnm

a8 = a’eaauoﬂ

— e — e
I N X

o N
~— ~— ~— ~—

Table 2: The system R

We begin by showing that R is locally confluent: we single out all critical pairs
arising from superpositions between the rules of Ry and we prove that they are
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joinable. Most of the cases can be reduced to the critical pairs treated in the following
lemma.

Lemma 6.1 The paths o' 0 6%, 57 and o*,0° o 87 are joinable in Ry.

Proof. Let o and O‘L be the e/u components of o’ and let us consider the following
commutative diagram, where e; o p corresponds to the e/u factorization in To of
ot oo and &9 0 8, is the e/m factorization of p o 7 in Ty.

i
ot o0 5]’

~e b ke

€1 €2

Since aé o g1 belongs to &; (recall the definition of left extensions of factorization
systems) and &7, belongs to M, we have (up to a renaming):

(af 0%, = ai oey (a0 0%), = p

i

(auoaooﬁj)gzglogQ ( Zogooﬁj)mz(i%

We can do the following rewriting steps:

0 , . : j
atoo”, ! =g, agoer, pof =R, 0QLogjo0ey, Opy
al, ol ol =R, Qg aLOUOO,BJ =pg. alogioey, Oy

and this proves the lemma. -

In subsequent sections we proceed with a systematic analyses of the cases. To simplify
the exposition, we treat (R!) and (R2) together; however some applications of (R})
may require an additional arrow A to the right (we put it within round brackets).
6.1 Superposition between (R.) and (R})
o, B9, (M)
(RE) (RY)
a’o B9, (A) o, Borl, (N)

If i = j, we can rewrite both members to o o fo~%. Otherwise, necessarily 3 belongs
to T and we can apply Lemma 6.1.
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6.2 Superpositions between (R!) and (R,)

CASE 1
ot B,
/ \
ol a o, ( a'o f,
CASE 2
e, aMO,BZ ’ a,
O,y O oﬁ‘ o'y
CASE 3
o, By
(Ry) (RY)
o', BL, Bl oy o’ o B,y
(Ri) (/o Bé_) o B,y

of o B, Bl oy

By Lemma 6.1, with 00 = ,Bz.
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6.3 Superpositions between (R!) and (R.)

CASE 1
o, B
a'o B, B, (A a'o f3,
CASE 2
a, B4,
/ \
ao B, B, 7,
(RL) a, ﬂgo(ﬁ; o), (V)

aofil, Bl ov', ()

By Lemma 6.1, with 0* = .

CASE 3
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6.4 Superposition between (R,) and itself

o, B,y
(Ru) (Ry)
e, ap o P,y &, Pes Buoy
e, (p o;e) ° Bus (R,)

Qe, Oy o fBe, B}L oy

By Lemma 6.1, with 0¥ = Bu-

6.5 Superpositions between (R,) and (R.)
CASE 1

a,f

(Ryu)

O[e, 0[# OIB

ao B, Bm
Qe, (a’u © /Ba) ° fm

Qe O (au o /86)7 Brm
By Lemma 6.1, with 0% = ), 0 3.
CASE 2
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a, 8,y
(m/ \Ra

Qe, au01837 04,,80’)/5, Tm

(N %)

Qe, Oy 0 B0, Ym

a, 8,y
(m/ \Ra

a, fe, /Bu°7 ao fey Bms Y

CASE 3

@, Beo (Bm)e, (Bm)uoy (Ru)

aof, (/Bm)ea (/Bm)u oy

In first member we use the fact that the following diagram is commutative

g

/B&‘ /Bm (/Bm)u

(/Bm)e

Thus, reasoning as usual (by uniqueness of factorizations - up to a renaming), we can
state that B, = Bz o (Bm)e and By = (Bm)u- We can apply Lemma 6.1, with o° = 3.
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6.6 Superposition between (R.) and itself

o, B,y
(R:) (R:)
o fey Bm, v @, 0%, Ym
(R.) @, B0 (BmoYe)s Tm

aofBe, BmoYe, Ym

By Lemma 6.1, with ¢ = ..
We can conclude:
Theorem 6.2 R is locally confluent.

It remains to show the termination of Ry. This result is a consequence of Theo-
rem 9.8, however here we give a direct proof, which uses less machinery. We need a
complexity measure for paths which decreases with application of our rules. At this
aim, we define:

y 0 ifal €& ; 0 ifa’eM;
pla') = e(a’) =

1 otherwise 1 otherwise

Let K be the path ay,...,a,. We define:

W(K) = (ulen), - plan))  e(K) = (e(an), ... e(ar))

(notice that u(K) = u(K') and e(K) = ¢(K') hold in case K and K' are alphabetic
variants each other).
Finally, we introduce the following order relation > between paths K, L:

e K > L if and only if either (i) or (ii) hold:

(i) |K| > |L| (where |K| denotes the length of K);

(if) [K| = |L] and (u(K),e(K)) >; (u(L),e(L))
(where >; denotes the lexicographic order between n-ple of integers).

It is a standard fact that
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Lemma 6.3 > is a terminating transitive relation.

Now we prove that > is a stable relation.
Lemma 6.4 K > K' implies L, K,R >~ L,K', R (for all L,R).

Proof. 1f |[K| > |K'| we immediately have L, K, R »= L,K', R. Suppose now |K| =
|K'|; we have to show that

(u(L), W(K), p(R), (R), e(K),e(L)) > (u(L), p(K'), u(R),e(R),e(K"), e(L)).
This follows from the fact that either p(K) >; u(K') or u(K) = p(K') and e(K) >,
e(K"). =

Lemma 6.5 Let L =g, L', then L = L'.

Proof. Since > is stable, it is sufficient to analyze the following three cases.
(1) o, B = (Ri) ot o (L.

We have |o, 87| > |o* o B?|, hence o, B = o o f'.
(2) @, B =(r,) Qe,y0p.

The two paths have the same length, moreover u(a) = 1 and p(ae) = 0 (otherwise
there is no way to apply (R,)). This implies that

(na), u(B),e(B),e(a)) >1 (u(ae), play o B), e(ay o B), e(ce))
from which «, 8 > e, a, o § follows.
(3) @, 8 =(r.) aof:,PBm.
Clearly |a, 8| = |a o Be, Bm|. Moreover:
@) > plao ).

In fact, if u(a) = 0, then @ € & (i = 1,2), which implies a o 5. € &;, hence
u(ao Be) = 0.

- pw(B) = p(Brm)-

Suppose that p(5y,) = 1, that is 8, = (Bm)e o 1, with p different from identity. Since
B =(B:0(Bm)e) o and B o (B )e belongs to &, p is also the py-component of 4, and
this means that p(g8) = 1.

- £(B) > e(Bm)-
Otherwise we cannot apply (R.). We get:

<:u(a)7 M(/B)a 8(5)? 8(Ot)> > <:u(a’ o /Ba)a M(/Bm)a 8(/8771)’ 8(0& o IBE)>

and this proves the lemma. —
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Since > is a terminating transitive relation, the following theorem is proved.

Theorem 6.6 R is terminating.

This concludes the proof of Theorem 5.1.%

7 The system R

Proving directly local confluence of R leads to unnecessary complications, this is why
we prefer to introduce another system (which we call R*) and prove local confluence
of the latter. In Section 9 we shall prove termination of both R and R* and then
we shall make a more precise comparison between R and R™: from this comparison,
canonicity of R follows immediately.

In order to introduce R™ we first consider slight modifications of rules (R,) and

(RL).
Rule (R,) is enlarged as follows:
(RM)+ <a7 /8>77 = (aewB)a (au X 1) 07

(notice that in case vector § is empty, we get ordinary (R, )-rule).

Rules (R;f,) are on the other hand restricted so that only 1-component arrows are
‘moved to the right’ (let us call (R;',)Jr the rules obtained by this restriction). In
conclusion, we let R be the rewriting system of Table 3.

It should be noticed that (as for R) also in R alphabetic variants of the above
rules are available as rules. For instance, rule (R]f))+ has the following alphabetic

variant
i’di’ i j’ , J i
y TPy o x sy, TN 2 xxz, Do
4
i didi oad ,myr o, 1z, xdb, x1z7,)of"
y TPEE0) vy wvr xy, IR gy g, ()

(where a further arrow must be inserted to the right in case i = 1, where Y’ is the
codomain of dé and where 7 is the projection Y1 x X x Y’ x Y, — Y] X X xY5). Other
alphabetic variants are possible, e.g. by permuting the components of (v%,d’, d’,~5).
Such alphabetic variants will be sometimes used during confluence proofs.

In the remaining part of this section we collect useful technical facts. We first

analyze the relationship between old and new p-extraction rules.

*Notice that all results in this Section depends only on the definition of left extensions of weak
factorization systems. As such, they can be used to handle pushouts (for faithful and bijective
on objects functors) in Cat, the category of all small categories. Recalling that monoids are just
one-object categories, Theorem 5.1 specializes to a little result in pure string-rewriting.
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(R)) a',p',y = a'oply

(R2) o, B = a?op?

(R:) o, = aofe,fBm

(R)™ (. B),y = (ae,B), (ay x 1) oy

(R (Y dY), (a,7mx), B0 = (y',d',dl),a x1,(1 x dy,) 0 5,0

where d' & &

(BT (0 d%) (a,7x), 8% = (¥, d%,d2),a x 1,(1 x d},) 0 B°
where d? ¢ &

Table 3: The system R™

Lemma 7.1 If K = K’ by a single (R,)"-step, then there is K" such that K’
rewrites to K" by (at most) 2 (R,)" -rewrite steps and K rewrites to K" by a single
(Ry)-rewrite step.

Proof. We have the following three (R,)"-rewrite steps:
(@, B),y = (ae,B), (u x 1) oy = (e, Be), (X Pu) oy =
= (aeaﬁe>ea <a6756>ﬂ o (alt X Bﬂ) o ’Y

We need only to show that (e, Be)e = (o, B)e and (e, Be)p © (o X By) = (&, ) -
Let us consider the factorization

o B

<O.’,,8> <O.’,,8>M

Z1XZ2

and let us put (o, ), = (o,7). We have ({(a, )¢ 0 0.) 0 0, = 0 © @, hence (by
uniqueness of factorization)

(a,B)e00. =0, and o, =0,

and similarly
<a’a/8>e o7, = 8 and /Bu = Tu-
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Thus

(%) (o, B) = (e, B)e © ({0, 7e) © (ap X Bu))-

The arrow (0., 7.) o (@, x (3,) belongs to My as it is equal to (o, 7) = («, B),; so if
we factorize (0., 7.) as € o and then po (o, x 3,) as €' o p/, we get that e o ¢’ is
the identity (being equal to the first component of the ¢/u-factorization of an arrow
in My, namely (o.,7:) o (o, % B,)). This can happen only if ¢ itself (which is a
projection) is in fact identity (up to a renaming); we thus established that (o, 7.)
belongs to Mj - which means that

(x)! (0e,7e) is a diagonal.

(this is clear as 0., 7. are both projections). From (a, 8)c00. = a, and («a, B)c07. = [,
we get

(e, Be) = (@, B)e 0 (0c, Te)

As first component is in £ and second component is in M, we get by uniqueness of
factorization,

(aea ﬁe)e = (0(, 6)8

and
(*)” (O(e, Be)u = (Uaa Ta)
which gives the claim (combined with («, 8), = (0., 7c) o (o, X B,) coming from (x)).

_|

The above Lemma guarantees that there is no need in the local confluence proof to
compute superpositions between rule (R,)" and other rules ((R,,)" itself included): it
is sufficient to compute superpositions between (R,) and other rules.?®> Using (R,)"
instead of (R,,) allows us to apply a less restrictive rule during confluence proofs; this
makes some passages shorter (the only little price we pay for that is that we shall
need to prove termination of (R,)" too). Next Corollary will be used in Section 9 and
is a slightly more accurate reformulation of what comes from the proof of Lemma 7.1
(recall that, according to (%)’ and ()" the third step was in fact a (Rdi)*-step, where
(Rdi)* is the diagonalization rule we met in Section 5):

Lemma 7.2 Let (R,)™ be the following special case of rule (R,)":
(R)*! (a,0), 8 = (ae, ), (@, x 1)0p.

If K = K’ by a single (R,,) or (R,)"-rewrite step, then K rewrites to K' by using a
finite number of (R,,) " -rewrite steps followed by a single (Rdi)*-rewrite step.

BIf K = K' and K = K" give rise to the critical pair (K, K"') and, say, K = K’ is a (R,,) "-step,
we can find Ky such that K’ =7, Ko and the pair (Ko, K"') is a critical pair generated by rule (R,)
(instead of rule (R,)™).
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In words: the e/u factorization of (ai,...,ay) is obtained by taking the componen-
twise e/u factorizations and then by applying a diagonalization step. The following
fact is very useful:

Lemma 7.3 If (¢},...,€\) € £, the ez- are pairwise distinct.

Proof. As &' is closed under composition with projections, all e§- are in £'. Let

(e;'-l,...,eé-m) be a list of distinct arrows containing exactly all the arrows among
et,...,el. By the previous Lemma, (6;1, . ,e§m> € &' According to the definition
of (eél, ... ,e;-m), there is a diagonal 0 such that

(e;-l,...,e;-m> od = (e’i,...,efl).

As § € My, by uniqueness of e/u-factorizations, ¢ is a renaming (thus showing the
claim). 4

Corollary 7.4 o € £ iff the components of o are pairwise distinct and all belong
to £.
A consequence of the above results is that e/u-factorizations are stable under

certain pullbacks, in the sense of the following:

Lemma 7.5 If o : Yy — Y has factorization o, o oy, then for every Z, a X 1z has
factorization (e X 17) o (e x 17).

Proof. Tt is sufficient to show that the components of 7y, o @, cannot be equal to the
components of mz. This is clear, otherwise we would have in our theories provable
equations of the kind ¢ = z;, where ¢ is a term not containing the variable z;: this
cannot be, otherwise (after making term ¢ a ground term by a substitution, if you
like) we would obtain degeneration, i.e. that all terms are provably equal. —

We now show that also rule (R;;) can be roughly achieved by finitely many (R;;)*-
rewrite steps. Let us use the notation K N\, L in order to express that there is K'
such that K =%, K' and K' &5 L.

Lemma 7.6 Let L be the path

I = y Xy w729y w7 By Yy

(where the arrow X is missed in case i =2) and let R, R' be the following two paths:

R = (y",0",0L),c X 1y, (1y, X &3,) 0 57, (X)
R, = <7i76ia 1Y>7a X 1Ya (1Y2 X 61) o /Bia (>‘)

(where we supposed that Y' is the codomain of 6.). We have:
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(i) Rk, R;
(ii) if 8" € To, then L <%, R;
(iii) in the general case, L \y R (and consequently L \, R').

Proof. (i) was proved at the end of Section 5 (it was actually used as simplification
step during completion). (ii) is easy, because we can move to the left (1 x ¢/)) in R
by <%, -equivalence:

(7', 0%, 000, ax 1, (1x &) 0 B1,(A) &%, (1,8, 8), ax 1, 5, () &k, L.

(iii) is proved by induction on the number of components of §. If such number is
1, there is nothing to prove (because either (R;,)+ or (ii) applies). So suppose it is
bigger than 1. If 6 € Ty, we just proved a stronger claim; otherwise L and R (up to
an alphabetic variant) are

(1) Yy "y wzxx 2 vy zxx Lu Xy
and
’ 1 §,dYm )o
@) v Ay x Y Yy oy (D )

respectively (with d € Tp). To the former, we can apply a (R;)+—rewrite step thus
getting

(e,mz) X1y (1y2><12><dm)oﬁ

3) Y v zx X xY! o vy x Zx VY )

U—YV

(where we called Y]’ the codomain of d.;). By induction hypothesis, there is path
K" such that (3) =% K" and K" <% (4), where (4) is the path (let Y be the
codomain of d;):

aXlyr X1y (1Y2><5m><dm)0,3 (\)

(4) Y %) s 2 X x Y x Y LY vy v x Y vy

As (v,4,d,d.,d.) is equal to (v,d,d,1y)o(ly, X 1z x 1x X (d¢,d.)), we can move right
ly, X 1z x (d.,d:) by 7% -equivalence, thus getting the path

(’YagadaIY>

@ 1 d,d))o
(5) y M)y 2 X x Y Y vy x v (O )

—V
which we know from (i) it is <% -equivalent to (2). In conclusion, we have
(1) =g+ (3) =%+ K" &R, (4) &, (5) €%, (2)

thus showing the claim -
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We need a final Lemma for next Section:

Lemma 7.7 We have Ry \, Ro, where Ry, Ry are the paths

) J i
Ri=Yx2, Yy vz, vz w Dy
Ro= Y x2z 2By xz U g Dy

(A is missed in case i =2).
Proof. Applying (an alphabetic variant of) Lemma 7.6 (iii), we have that

Rl = (WY ° ali?ﬂ-Y ° 0[%,71’21% <7TY177TZI © Bj>7 7i7 (>‘)
N
(lyxz,my ook, my o ab,mz,), (lyxz, X (77, 087)), ((my o a}) x 12,) 0", (X)

(my, Tz, Ty o &}, Ty o aby, Tz, ),
(Iyxz X (77,0 07)), {7y, mz,) 0 (f X 17,) 07", (N)
&%, (see Figure 1)
(my, Tz, Ty 0 0, Ty 0y, Wz, ), (my,my ) o (y X B7), (@ X 17,) 07", (X)
SRo
(my, Tz, Ty © O/i,ﬂy o Oté,WZJ °© (FY,W%J, ly x f7, (Oéli x 1z,) 07", (N)

<7TY77T21>7 Iy x /Bja (all X 122) O7ia (>‘)

1Y><Z13 1Y X /B]7 (azl X 1Z2) O’Y’ia (>‘)
@?20
ly x 7, (o4 x 1z,) 09", (X) = Ry

as wanted.

8 Local confluence, 11

In this section we prove that R™ is locally confluent. In order to show confluence of
a pair of paths (Ry, Ra), we shall use the following schema: we find Ly, Lo such that
Ry N\, L1 and Ry \ Lo and I (:);‘30 Ly. Canonicity of Ry (which was proved in

Section 6) guarantees that in such a condition K, Ky are joinable.

Throughout this section we shall mention arrows «,d, a, 3,0, A whose domains

and codomains are fixed as follows:
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ly xzy X(17,087)

YXZ1XY1XY2XZ1 YXZ1XZ2
(my,m%)) (v, T 25)
Y x Z; T Y1 x Zy

Figure 1: Commutative diagram

(v,d) (o, mx) B b v A

Y Y1XX YQXX

We also assume that d factorizes in €/m-components as follows

y —4—x
d m

N

We first analyze some situations which are very frequent during local confluence
proof.

Lemma 8.1 Let K; (i € {1,2}) be the following path:
Ki=(y",d' dl), 0/ x 1y, (ly, x d},,) o B° 0 07, (X)

(where X lacks in case i = 2). Then:

(i) The path K| = (v, d'), ((a?,7x) o %), ((&/,mx) 0 ), 0 6, (N) is joinable with
K; in RT.

(ii) The path K!' = (v',d'), (o, 7x) 0 B°,0°,()\) is joinable with K; in R*.

Proof. (ii) is trivially reduced to (i) (just apply (R,) in K/ to decompose (o, wx)o/3°).

To prove (i), we have to factorize the arrow (af,7x) o 4% in components e/pu.
We first factorize (a7, mx): by Lemmas 7.2, 7.3, such factorization is obtained by
first factorizing «; in e/ components and then diagonalizing with wx in case 7x
appears among the components of . We have to distinguish whether mx is among
the components of a2 or not.

Case 1: mx is among the components of ag, hence o has the following factoriza-
tion in e/u-components:
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Y x X o Y,
(&, mx) a{t
Sx X
Then:
(of mx) = (&), mx,mx) 0 (ag; x1x) = (&, mx)o[(lg x Ax)o (ag; x 1x)]

A . . .
where X =% X x X is a diagonal. We have two subcases, depending whether mx
appears in the e-component of (1 X Ax) o (a], x 1x) o 8° or not.

Subcase 1.1: let us assume that (1g x Ax) o (a, x 1x) o 8° has the following
factorization in Ty

(15 XAx)O(a{LXlx)O,BO

SxX

7TS/><1X

=

S'x X

It follows that (o, mx) o 8% = (a/,mx) o (s X 1x) o u; by the fact that (&, 7x) o
(rsr x 1x) belongs to £ and by the uniqueness of decomposition we have:

({07, mx) 0 8%) = (&7, mx) o (msr x 1x) = (& o w1, mx)
((ajaﬂ-X> o IBO)M =W

It follows that K = (v, d"), (& o mgr, mx ), 0 0%, (X). We can apply Lemma 7.6(iii)
(in fact, if ¢ = 1 the arrow X belongs to the path) and we obtain K]\, L;, where

Li= (v, d'1y), (@ owg) X 1y, (Lg x d') o o 6, (X)

Let us consider K;. We first observe that ol x 1y+ can be decomposed in e/u com-
ponents as (a? x 1y7) o (e, X 1ys) by Lemma 7.5; therefore an application of (R,,)
yields to

Ki =g+ (7, did), ol x 1y, (od, x 1yr) o (1y, x di)) o 890 07, (X)

<7’iadiadé>a (71— o @jaﬂXaﬂY’>a (aﬂ X 1Y’) o (1Y2 X d;tn) o /BO o 02.7 (>\)
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where ¥; x X x Y' 75 ¥} x X. We can apply Lemma 7.6(iii) on (d’,d’) and we get:

K;
N\
(v, di di1y), (w0 a7) x Ly, (L x (d',di)) o (ofs x 1yr) o (1y, x di,) 0 B0 0 67, (N)

y e

(v, db di 1y ), (moal) x 1y,
(Ls x (d',dL)) o (Lg x 1x x diy) o (af, x 1x) 0 B0 6%, (A)
= (see Figure 2)
(Y, di,di1y), (moad) x 1y, (1g x di) o (Lg X Ax) o (ad, x 1x) 0 820 67, (A)

» e

(vt d',di, 1y ), (Toal) x 1y, (1g x d*) o (mgr x 1x) o o B, (N)

» e

(inadiadéa ]-Y>7 (7T X 1Y) o (@j X ]-Y)a (7TS’ X ]-Y) o (15’ X dz) o uo Gia (>‘)
SR,
(¥, d',dL, 1y) o (m x 1y), (@@ x 1y) o (mgr x 1y), (1gr x d*) o juo 6%, (N)

» e

(’yi,di, 1y>, (@j o 7T5/) x ly, (15! X di) oL Ogi, ()\)
which coincides with Lq, and this prove (i).

15X(di,dé>

SxY SxXxY'
1gxd! 1gx(d*,di) 1sx1x xdk,
Sx X x X xX

ISXAX

Figure 2: Commutative diagram

Subcase 1.2: now (1g x Ax)o (oz{t x 1x) o B° has the following factorization in
T():
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(15 XAx)O(a‘Z;Xlx)OﬂO

SxX

TSOT gl

=

S/

We consequently have
(od,mx) 0 ) = (09, 7x) oms oy = o o g
({o/, mx) 0 B%)u = p

In the present subcase we do not need manipulating K/; moreover by manipulating
K; as in the previous case, we get

K;
N
(Y, d',di, 1y), (modl) x 1y, (1s x d') o (1s x Ax) o (ad, x 1x) 0 800 6%, ())

(*yi,di,dé, ly),(moda?) x 1y, (1g x d") omg o mgr o pu o %, (N)

<7i7di7d27 1Y>7 (71' o O_'/j) X ly,mg omg oo 02'7 (>‘)
SRo
(Y, d'di1y), (o ad) x 1y) o ms o msr, juo 0%, (N)

<7ia dia déa 1Y>a <7TY177TX> 0 @j O Tgr, 4O 91" (>‘)
SR
<7i7 dz)a O_fj OTgry |4 O 02'7 (>‘)

which coincides with K/, and this prove (i).

Case 2: suppose now that mx does not belong to ag, namely «; has the following
factorization in e/p-components:

Yy x X o’ Y,

ol o,
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This implies that:

(ajaﬂ-X>6 = (ag,ﬂX} (ajaﬂ-X>H = a{t X 1x

We need to factorize (az x 1x) o 8" in Tp: again, we have two subcases, depending
whether mx appears or not in the e-component.

Subcase 2.1: let (a{t x 1x) o 3% factorize as follows:

g% X (O(inX)OIBU

g X 1x %

S'x X

Reasoning as in Case 1, it follows that:

(o, mx) o B =(domg, mx) (o), 7x) 0 B%) =1

We have

Kzl = <7i7di>7 (0% o T‘-S’aﬂ-X)a Mo Gia ()‘)
N

<7iadia 1Y>7 (O(g © 71-5') X 1y, (15’ X dz) opo 92.7 (>‘) (Lll)
The arrow o/ x 1y decomposes in e/p components as (a x 1y/) o (az X 1y+) (see
Lemma 7.5); thus, by (R,), K; rewrites to

<7iadiad2>a O./g X Ly, (a’ft X 1Y’) °© (1Y2 x dZn) ° /80 o 92.7 (>‘)

&%, (by Lemma 7.6(i))
(¥, d' 1y, o x 1y, (1s x di) o (ad, x 1yr) o (1y, x diy) o B2 0 67, (N)

(¥, di 1y, ol x 1y, (1g x di) o (1g x di ) o (od, x 1x), 8% 0 07, (N)
@%0
(v i, 1y), ol x 1y, (Ls x d') o (ady x 1x) 0 B0 0 67, (N)

(v, di, 1y, o x 1y, (Lg x d®) o (mg x 1x) 0 o8, (A)
@3‘30

<7iadia 1Y>7 (Ojg X 1Y) o (71-5' X 1Y)7 (15' X dl) oo 01" (>‘)
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which coincides with L), and this concludes Subcase 2.1.

Subcase 2.2.: let (oz{t x 1x) o BY factorize as follows:

(Cl({t X 1X) 0,60

SxX
TS O Tg! H
g’
We have
(o mx) o f)e=alomy  ({of,mx) 0 B")u = p

Reasoning as in Subcase 2.1, we have

Ki &%, (v, d', 1y), ol x 1y, (1s x d') o (a{t x 1x)oB%0 6 (N)

(v, d', 1y, o x 1y, (Lg x di) o mg o wgr o o 67, (X)
SR,
(v, d' 1y), (Ty,,mx) 0 ol omg, pofi (N
SRo

<7i7 dl>7 Cl(é oTgr, O oi’ ()‘)

which coincides with K. -

Lemma 8.2 Let K; (j € {1,2}) be the following path:
Kj =y, d',dl), o x 1yr, (1y, x dy,) 0 8°,67, (A)
(where X lacks in case j = 2). Then the path
K" = (', d'), (o ,mx) o 820 67, (N)
is joinable with K; in R*.

Proof. Here we cannot apply the products rule on K", therefore we have to act on
K; thus we have to decompose (ly, x d,) o 8% in e/p components. Suppose that the
e/p-components of d, are

di

N

YI
0
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Then by Lemma 7.5:
(1Y2 X dfn)e =Ly, X & (1Y2 X d:n)lt =1y, X p

We decompose (1y, x d%,) o 8 as follows:

ly. Xdi
Yy x V! = Yy x X
Ly, X4 Ly, Xp
Yy x S B0
X
7TY2I 7Tsl
Y
! !
Yy xS - |74

Since 1y, x 6° belongs to &, we can state that

((1Y2 X din) o ,30)6 = (1Y2 X 52) o (71'Y21 X 71'51) = 71'y2/ X ((5l o 7'('5/)
(Lyy x dp,) 0 B%)u = v

By (R,), we have

Kj =R+ <7iadiad2>aaj X 1Y’77TY2' X ((w OWS’)a’/Oeja (>‘)
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Lemma 7.7 yields (by a “\-step):6

<7i7diadé>7 1Y1 X 1x X (5Z 077.5")7 ((aj O7TY2’) X 15’) o V00j7 (>‘)
SRo
(Y, didi), 1y, X 1x x 0%, (1y; X 1x X wgr) o (0 o myy) X 1gr) o0 67, (X)
SR,
(¢, dt, dl o 6%, (of x 1g) o (7ry2/ X mgr)ovofl, (N

(', d',dL o 8%), (o x 1g) o (Ly, x p) o 52067, (X)
(f)ﬂadladé ° 5l>7 (]-Yl X 1X X H’) o (aj X ]-X) OIBO ° eja (>‘)
SR,

(f)ﬂadladé o 5l> ° (]-Yl X 1X X H’)a (aj X ]-X) OIBO ° eja (>‘)

(v',d",d", (o x 1x) o %067, (X)
@3‘30
<7i7di>7 (aja 7TX> © BO © eja ()‘)
which coincides with K]". .

Let us now prove local confluence of R*. To this aim, by Section 6 results, it
suffices to study the superpositions between the rule (R;,)Jr and the other rules, itself
included (see also the observation following the proof of Lemma 7.1).

8.1 Superpositions between (R})" and (R.)
CASE 1

We have a path of four arrows 01,65, 03,64 and we apply (R.) on 61,6, and (Rg;)"r on
05, 03,6, (clearly, if the rule applied is (R},)J“, we have to add an arrow A to the path).
Let us first suppose i # j; in such a case 3 must belong to Tyq:

26We have a projection Ty) Y> — Y3, hence o/ must be a pair (of vectors), whose component

having codomain Y, is obviously o’ o Tyy.
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(Y0, dOY, (o, Ty ),
/ \
(0, d%, (o, wx),

’)/ dO dO O.’lel 1Y2Xd0 ,89,(>\)

In this case the two members of the critical pair are <7, -equivalent by Lemma 7.6(ii).
If + = 7, then we have:

Ay dY, (e, ),
/ \
(v, d%), (o, Tx ),

RZ
i dldD), o x 1y, (Ly, x di) o B ()

By applying Lemma 7.6(iii) to first member (where ¢? o (%, d") = (¢' 0 4%, (o d')) we
have a \-step to the path (let W be the domain of ¢?):

(C"oy',CPod lw),a X Ly, (1y, X (Pod)o B (N)  (L1)

By applying (R.) to the second member, where a x 1y is (7o, 7y) (with Y7 x X x
T

Y — Y x X), we get

(Cz o 72'7 CZ o dia CZ o dels>a <7T ° &, 7TY’>1 (1Y2 X d;tn) o IBi, (>‘)
N, Lemma 7.6(iii)
<CZ o 7i7 CZ ° dia CZ ° dzga 1W>7 (71— o O() X 1W7 (1Y2 X CZ ° dzg) o (1Y2 X d;n) o /Bia (>\)

(C"ory,(Pod (Podl, Iw), (m x 1) o (e x 1), (1y, x (" odlodl,) o B, (X)
@%0

<CZ 0 7Za<Z o dlagz o déa 1W> o (71— X 1W),O[ X 1Wa (1Y2 X CZ ° dz) o /Bia (>‘)

<CZ 07i7Ci ° dia 1W>aa X 1W7 (1Y2 X CZ ° dl) ° /Bia (>\)

which coincides with (Ly).
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For future reference let us mark the following fact we established during the above
proof:2”

Lemma 8.3 Paths
Ci o <7i7di>7 (0[, 7TX>7Bi7 ()‘)
Ci o <7i7diadé>aa X ]-Y’a (1Y2 X din) o IBi7 ()‘)

are joinable in R™.

Let us go on by examining other superpositions.
CASE 2

We have a path of three arrows 61,05, 03, we apply (R?;) on 01,0y and (R;,)Jr on the
whole path. If ¢ = j everything trivially compose; otherwise #; must belong to Ty.
Therefore we have:

(707d0>7 <a’ja 7TX>7/Bia (>‘)

(RY) (Ri)*

(7%, d%) o {a?, mx), B, (N) (7%, d%,d2), o x 1y, (ly, x d}y) 0 B, (N)
The two members are <7 -equivalent by LemmaT7.6(ii).

CASE 3

We have a path of three arrows 6,6, 65 and we apply (R?;) on 0,03 and (I%)Jr on
the whole path. Again everything compose if 7 = j; otherwise f3 must belong to
To. Moreover as i = 1 or j = 1, we need a fourth arrow 64 (64, in its turn, must be
followed in a well-coloured path®® by a further arrow X in case 64 belongs to T1\Typ).
We have:

?"The Lemma comes from the fact that the first step we applied to second member was a (R%)-step.

280f course, only well-coloured paths occur in our rewriting, so we are justified in limiting ourselves
to such paths.
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(v, d", (od,Tx),
/ \
(¢, dy, (od T x) (v, d',dL), 0 x 1y, (1y, x di,) 0 82,8, (X)

If 0 € T;\To, we compose (&, myx) o 8% with 6 and then apply Lemma 8.2. If
6 € T;\To, we compose (ly, x d’,) o 80 with # and the confluence immediately
follows by Lemma 8.1(ii). If §# € T, we can in any case apply one of the two previous
solutions (because either i or j must be 2, hence lack of A does not matter).

CASE 4

We have a path of four arrows 61, 69, 03,6, and we apply (RZ) on 63,04 and (R;f,)‘Ir
01,05,05. Suppose j = i; that is:

(v, d"y, (o, mx ),
/ \

(v, d*y, (e, mx ), B 0 6, ( (v, d' dLy, o x Tyr, (Ly, x d,) o 8%, 6, (X)

Then we can reduce both first member (by (R;)*) and second member (by (R.)T)
to the path S . o
<7la dla d2>7 a X 1y, (1Y2 X d:n) o /Bl o 027 (>‘)

Suppose that 7 # j; in this case 35 € Ty and we have

(v, d", (o, mx ), 2,67, (

/ \
(o, Tx), 00]

(o, di, (v, di dL), o x 1y, (Ly, x diy) 0 8,67, ()
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If o € T}, we can trivially apply (R’) to the second member and then get first member
by <% -steps. The relevant case is when a € Tj: here we can rewrite first member

by (R,];) to (7%, d"), (e, mx) o % 067, ()\) and then we apply Lemma 8.2.

8.2 Superpositions between (R))" and (R,)

CASE 1
C7 <727 dl>7 <O[, 7TX>7 /Bia (>‘)
(Ry) (Ry)*
Cea Cu © (717 dl>7 <O[, 7TX>7/Bi7 (>‘) Ca (717 dia d(l;>7 a X 1Y’a (1Y2 X d;n) o /Bia (>‘)

where ( factorizes as follows
s Y

N S

By applying Lemma 7.6(iii) to first member (where , o (v¢,d") = ((, 0 7%,y o d)),
we obtain, through a \-step:

14
G

Cer{Cuo'sCuod 1z),ax 1z, (1y, x {uod) o f,(A)  (L1)

Let us apply (R,) to the second member; we get

Cea (C}t © /Yiag;t o diaC}t ° di_>,0( X ]-Y’a (]-Y2 X d:n) o IBia (>‘)

Cea (Cu © 7i7 CM o dia C}t ° d1é>7 <7T ° «, 7TY’>7 (]-Y2 X d:n) o IBia (>‘)

with Y1 x X x Y" "5 ¥; x X. We can apply again Lemma 7.6(iii) and get, by a
N\-step
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Cea (CM o 7iaC,u o diaC,u o dzsa 1Z>a (71' o O.’) X 1Za (1Y2 X CM © dzs) o (1Y2 X d:n) o /Biﬂ (>‘)

Cea (Cu o 7iaC,u o diaC,u o dz:a 1Z>a (71— o Ot) X 1Za (1Y2 X C,u o dz) o /Bia (>‘)
SR

Cea(C,u °7ia<u Odia(n OdéalZ> o(mx1lz),ax 1Za(1Y2 X Cu Odi) OIBia ()

Cea (CM o ’Yia Cu © dia ]-Z>7 a X ]-Za (]-Y2 X Cu © dl) o Bia (A)
which coincides with (Ly).

ldl (o, Tx),
/ \
a7rX

(v, d i), o x 1y, (Ly, x d ) o BE, ()

CASE 2

where we suppose (v, d") to have the following factorization in components e/

d’L
o' Vi x X
\\ / 50
We apply (R,)" on the second member to the component (v, d’) of (v,d’,d.) and
we obtain

<niad2>a (<00130> X 1Y’) o (a’ X 1Y’)7 (1Y2 X d;n) °© /Bia (>‘)

(n',d%), ((0°,5°) 0 @) x 1y, (1y, x dy,) 0 5, ()
@%0

(', 1y), ((0°,5%) 0 @) x 1y, (1y, x di) o (1y, x dy,) © B, (A)

<nia 1Y>a ((UO, 30) ° O./) X 1y, (1Y2 X dz) ° IBi’ (>‘) (LQ)
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0

We need to factorize s” in components ¢/u in Ty.

' " 50
YA A X

Al H
ZII

where Z' x Z" = Z. This implies that 1’ has the form (n},n}), where Y My Z' and

Y 25 7", By applying (R,)" on the first member to the arrow (¢%,5%) o (a, mx) =
(09,5 0 a, %), in order to decompose s, we obtain:

(nian%% ((an SO> ° aaﬂ-Z”>a (1Y2 X M) o /Bia (>‘)
which, by Lemma 7.6(iii), becomes (through a “\-step)

(77{,7737 1Y>7 (<00730> o Ot) X 1y, (1Y2 X 775) o (1Y2 X M) o /Bi7 (>‘)

<nia 1Y>7 (<00a30> ° O./) X 1y, (1Y2 X 77% o'u) OIBia (>‘) (Ll)

Since n oy =N omzm o = n' o s’ = d', we can conclude that (L;) coincides with
(L2).

CASE 3
<7i7di>7 (0[, 7TX>70i7 (>‘)
(Ry) (Ry)*
<7i7 dl>7 (0[, 7TX>67 (0[, 7TX);L o oi’ ()‘) <7i7 dia dé>7 a X ]-Y’a (1Y2 X d;n) o oi, (>‘)

Confluence is an immediate application of Lemma 8.1(i) (taking as 4° the identity).

CASE 4
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(v, d"y, (o, mx ),
/ \

(v, diY, (), B, B 0 6 (v, i, di), o x 1y, (ly, X d ) o B1,6

Tt suffices to apply (Rl )t to first member and the confluence immediately follows by
Lemma 6.1 (with o = ,6”)

8.3 Superpositions between (R))" and (R.)
CASE 1

Ay dY (e Ty ),
/ \
og, 0[7TX

¢ v didiY, % 1y, (Ly, X di) o Bi, ()

where we suppose (v,d") to have the following factorization in €/m-components

y _hd) Y x X
Y
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Then, by the uniqueness of decompositions, since ¢ o d’ o d, = d', we have:
god =d d =d Y =Y
We apply (R})* to the first member and we obtain:
Coe, (¥, d' dl),a x 1y, (1y, x d}) o B, (M)
SR,
C,eo0 (’717 Jia JD? ax lyrs, (1Y2 X d;n) ° Bia ()‘)

Ca (6 Ofyiag © Ji,g © J@aa X ]-Y’a (1Y2 X d;n) o Bia ()‘)

Ca (,),1,’ dia d1é>7 a X ]-Y’a (]-Y2 X d;/"ﬂ«) © Bi’ (A)

which coincides with the second member.

CASE 2
<7i7 dl)a (Oé, 7TX>¢ IBi7 (>‘)
(R:) (R)*
<7i7 dz) OE&, (54, h)a IBi, (>‘) <7ia dia dzg)a a X 1Y’7 (1Y2 X d;tn) o IBi7 (>‘)

where we have factorized (o, 7x) in components £/m as follows

(o mx)

ViXxXX ——Ye x X

Ql

On the other hand, let » = h. o hy,. Since € o h. o h,;, = 7x, by uniqueness of
factorizations, h,, must coincide with 1x. Therefore h = h, is the projection?® on X,
hence (up to renaming) we have:

€:7I'Y/X1X Z:YIIXX

2Aseoh. = mx, we have that h. composed on the left with a projection is wx: it follows that h.
itself must be the projection into X (with domain 7).
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Thus, first member coincides with

<7i o WY’adi>7 (d, 7TX>7Bi7 ()‘)

which, by (R})", becomes

<7i o ﬂyl,di,dQ,df X 1Y’7 (1Y2 X d;tn) °© IBi’ (A)

<7iadiad2> o (8 X 1Y’)7O_4 X 1y, (1Y2 X d;n) 0 /Bia (>‘)
SRo
<7Zadiadé>7 (8 X 1Y’) o (5‘ X 1Y’)7 (1Y2 X dZn) o IBia (>‘)

<7iadiadé>a8 oa X lyr, (1Y2 X dZn) o IBia (>‘)

and, since € o @ = «, the last path coincides with the second member.

CASE 3
<7iadi>7<aa 7TX>aIBia (>‘)
(R:) (R;)*
<7i7di>a (04,7TX> o /827/871717 (>‘) (717 dia d(l;>7 a X 1Y’a (1Y2 X d;n) o /Bia (>‘)

We have to factorize 5. Suppose that ‘X belongs to the codomain of 82’ that is

e
YQXX IB

(3
U
Ty X 1?\ /B(jn

Yy x X

Then the first member coincides with

<7i7di>7 (0( o ﬂ-Y.Z’a WX)»/B;{na (>‘)
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which is rewritten by (R})* as

<7i7di7d2>7 (0[ °© 7TY2’) X Ly, (1Y2’ X d:n) ° 1672’7’17 ()‘)
SR,
<7i7di7d2>7a X ]-Y’a (ﬂ-YQ’ X ]-Y') ° (1Y2' X d:n) ° 1672’7’17 ()‘)

<7i7divdé>aa X 1y, (1y, % d;n) °© (7TY2’ X 1x)o B:nv (A)

<7ia dia dla)a a X 1Y’a (1Y2 X dZn) o IBia (>‘)
which coincides with the second member.

If ‘X does not belong to the codomain of 8’, that is 52 = 7y, o Yy, then the second
member coincides with

('Yiadiadé)aa X 1y, (1Y2 X din) O My, O Myy © /672717 ()‘)

<7i7diadé>7a X ]-Y’77TY2 o 7rY2’ © 5:717 (>‘)
SR,
<7zadlad1é>a (0{ X ]-Y') O Ty, © ﬂ-YQ’aﬁfna ()‘)

<7i7 dia dé)a <7TY177TX> oo 7TY2’757ina ()‘)
SR,
<7zadlad1é> o <7TY177TX>70{ © 7rY2’757ina ()‘)

<7ia dl>a a o 7TY2’1/B7Z;1’ (>‘)

which, by the fact that o o 7y; is the same as (a,7x) o 7y, o myy, coincides with the
first member.

CASE 4
<7i7di>7 (aaﬂ-X>76i79
(R.) (R))*
<7iadi>a (O(,Wx>,/8i o eaaom <7iadiadé>aa X 1Y’a (1Y2 X dzn) o /8259
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It suffices to apply (R;f,)‘Ir to first member and the confluence immediately follows by
Lemma 6.1 (with 0 = 6,).

8.4 Superpositions between (R))* and (R/)"
CASE 1

Here we have three arrows 601,605,603 and we apply both rules to the whole path; the
case i # j is trivial (it implies that 6; and 63 belongs to Ty, so that everything
compose). Let us suppose i = j. Arrow s (up to an alphabetic variant) must be of
the form (o, 7k, 7%). We have in principle two cases (to be treated in a very similar
way) depending on whether 71'}( and 71'%( are the same projection or not.

SUBCASE 1.1
(' d"), (e, mx, mx), B, (A)
(R,)* (R,)*
K, K,
where
y 008y Semom) v Py

di di o :
and Y —= Y’ — X corresponds to the factorization £/m of d'. The two members
are:

Kl = (717dladé> ) (04,71')(> X 1Y’ ) (1Y2 X 1X X d;tn) O/Bi7 (>\)
= <7Zadladé> > <<7TY137TX> o 04,7TX,7TY'> > (1Y2 x 1x x d:n) OIBiﬂ (>‘)
K2 = (717dladé> ) <<7TY177TX> o aaﬂ—Y’aﬂ-X> ) (1Y2 X d:n X ]-X) OIBi7 ()‘)

By applying (R;;)Jr on both members with respect to mx, we get the path

(Y, d'dl,dly , ((my,, mx) o ey Ty, ), (Ly, x iy x di) o B ()
where 7r)1/, and 7r)2/, project on the first and on the second Y’ respectively.

SUBCASE 1.2
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where

ld’L 7 a, 1, 2 7
y 054 v x o mx, ) Yox X x X vy

di di 7 7 . .
and Y =5 Y % XV =5 Y7 5™ X correspond to the factorization e/m of d*, c".
The two members are:
Kl = <7iadiaciacé> ) <7T © 04,71'}(,71')/11> ) (1Y2 X 1X X C;n) o /Bia (>‘)
K2 = <7i7diadéaci> ) (71— © aaﬂ-Y’aﬂ—§(> ) (1Y2 X d;n X 1X) © Bia (>‘)

where 7 denotes in both cases the projection from the corresponding domains onto
Y1 x X x X. By applying (R;,)‘Ir on both members with respect to the suitable
projection on X, we get the same path, namely

<7Z7d27d267cz702€> Y <7r ° a7 T‘-Y,?T‘-Y”) Y (]'Y2 X d:TL X C:”Il) 05i7 (A)

CASE 2

Here we have a four-arrows path, (R})" is applied to the first three arrows and (R))*
to the last three. We have

(7', d'), (o ), (B, k), 67, (N)

(B ()"
K1 KQ
where
i i i j i1 ,
y )y x 0hdm) e x Ty Oy

1 .
and Yo x X x X "X, X is the projection on the first X.?° We also assume that d’
and ¢ have the following factorizations:

30Tt cannot be the projection on second X, otherwise the proviso for rule (R{,)+ is violated.
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d' X YixX c X

N AR A

Y’ VA

Y

Tt follows that
Ky = (y,dd), (o,c7) x 1yr, (ly, x 1x x dj,) o (B, 7), 67,(N)
Ky= (v,d)), (o, mx, ), B x 1z, (1y x ch) 0 67, (N)

First member can be written as follows

(717dladé> ) <<7TY177TX> o aja (WY177TX> Ocjaﬂ-Y’> 3 ((1Y2 X 1x X d:n) oﬂian> 3 9] 3 (>‘)

We can apply (R{;)*‘ with respect to the projection mx (we point out that X is the
codomain of (my;, mx) o ¢/, which factorizes, in e/m components, as ({my;,mx)ocl)o
ch). This yields to

<727d27d25> ) <<7TY177TX> o aja <7TY177TX> Ocjaﬂ-Y’, <7TY177TX> o Cg‘> 5
. . ; (L)
((lyy x Ix x dp,) 0 ') x 17, (1y X ci) 0 07, (})

By applying (R;',)Jr to second member with respect to the projection wx, we get

<72.7diad2> ) ((?TYla 7TX> oa/j, <7TY177TX> ocj, Ty’ (7_TY177TX> ch> )
(1Y2X1Xxd;£n><1z)0(,8i><1z), (1U><C’]m)09],(>\) (Lg)

Since ((1Y2 X 1X X d;tn) o /BZ) X 1Z coincides with (1y2 X 1X X d:n X 12) o (/Bz X 12),
paths L; and Ly coincide.

CASE 3

Here we have a five-arrows path, (R;,)Jr is applied to the first three components and
(R})™ to the last three components. We distinguish the subcases i # j and i = j.

SUBCASE 3.1

The third arrow must belong to Tg, hence we have

07, (n,mx), (0, d0), (e, mx), B, (A)
(Ry)* (R

Ly Lo
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where

g o 0 40 j

Therefore L; and Ly are as follows (let W', Y’ be the codomains of ¢, d?):

erUe -
Ly = <oiaciacé> s X 1y, (1W2 X C:n) o (707d0>7 <a7 77X>a18j7 (>‘)
L2 = <6n.aci>7 <77a7TX>a <7Oadoadg> , 0 X 1Y’ ) (1Y2 X d?n) OIBj7 (>‘)

Applying (R;',)Jr to Lo, one gets

(O, ¢e) s nx Ty, (L, X ) 0 (7%, d%d2) , @ x 1yr, (1y, x dy,) 0 87, (N)
By an <7 -step, we get

08,y x Ly, (L X ), (72,d0,d0) ) oo x 1y, (1y, x d2) 0 B9, (M)

which is 7% -equivalent to L; by Lemma 7.6(ii).

SUBCASE 3.2
(927 Ci>7 (777 TrX)a <7i7 dl>7 (0[, 7TX>7 16i7 ()‘)
(Ry)* (Ry)*
L1 L2
where
01’ ) ) di 3
W/M,[/V1 XXM,WZXXL),YI XXM’YQ XXiU

Therefore L; and Ly are as follows (let W', Y’ be the codomains of ., d!):

ey e/
Ly = <oiaciacé> , Xy, (1W2 X C:n) o <’Yiadi>a (O‘77TX>7/Bia (>‘)
Ly = (0,¢), (n,mx), (v d'ydi) , aox 1yr, (ly, x djy,) 0 B, (N)

Applying (R})", Ly rewrites to

00,y x Ly, (L, X i) o (v, dydl) , aox 1y, (y, x d) o B (M)
which is confluent with L; by Lemma 8.3 (take ¢* to be 1y, x c,)).
We so completed the proof of the following:

Theorem 8.4 R is locally confluent.
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9 Termination

In order to show termination of R and of R™, we shall associate with our paths
certain commutative labelled trees. Such trees are represented as terms built up from
the countable set of variables {z;};>1 by using four! constructors f; (i € {0,1}?) of
type TermMultiset — Term.

R-trees (or, briefly, trees) are inductively defined as follows:

e 1; is an R-tree for every ¢ > 1;

e if {T1,...,T,} is a multiset of R-trees and i € {0,1}2, then f;(T1,...,T}) is an
R-tree.

As a next step, we introduce a relation > among our trees; we have T; > Ty iff one
of the following two conditions is satisfied:

o Tyis fi(T],...,T)) and Ty is f;(TV,...,T})) and {T7},..., T} } >n {TV,..., T} };

o Ty is fi(TY,...,Ty) and Ty is f;(T},...,T,) and ¢ > j (in the lexicographic
sense).

Some comments are in order. First >, is the multiset extension of >; secondly the
definition is by induction on the height A(T}) of the tree T;. It is easily seen that
Ty > Ty implies h(Ty) > h(T3).3? In the following, we use > for the reflexive closure
of >.

We have the following easy

Lemma 9.1 > is a transitive and terminating relation.
Proof. For transitivity, let us show that

Ty > Ty > T3 implies T7 > Tj
by induction on A(T}) 4+ h(T>) + h(T3). We have two cases:

(i) suppose that T} > T5 holds by the first clause, so that Ty is f;(T},...,T), Tb
is f;(T7,...,T}) and {T7{,..., T} >m {TV,...,T}}; Ty > T3 follows from the
fact that >, is transitive (as > is transitive on lower height trees by induction
hypothesis);

(ii) suppose that Ty > T, holds by the second clause, so that Ty is f;(T},...,T}),
Ty is f;(T7,...,T,) and i > j; if T > T3 holds by the first clause, then 77 > T3
holds by the same clause, if it holds by the second clause, then 77 > T3 holds
by transitivity of lexicographic orders.

3! Actually only three such constructors will be really used (f(0,1) is useless).
32h(T) is obviously defined as follows: variables have height 1, f;(Ti,...,T,) has height 1 +
maz(h(Th),...,h(T)).
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For termination, suppose we have a chain
’1"1 >T2 > Tz > e

We show that this cannot be by induction on h(Ty). As >,, is terminating (by
inductive hypothesis on >), first clause cannot be used infinitely many times; so
starting from a certain T}, on, only the second clause applies, which is absurd as such
clause can be consecutively applied only at most 3 times. —

As our trees are represented as terms, it makes sense to speak about substitutions.
Substitutions are compatible with > in the following sense:

Lemma 9.2 Let a succession {T;}i>1 of trees be given and let T', T" be such that
T" > T"; we then have T'(T;/z;) > T"(T;/x;).

Proof. Tmmediate. =

Let us now turn to our paths. First, we need a definition. For an arrow o, let us

put . .
6(0/) _ 0 if o' €& m(az) . 0 ifa’ €€
"1 1 otherwise "1 1 otherwise

Lemma 9.3 For every arrow « and for every ¢ € &, we have x(¢ o a) = x(a)
(whenever composition makes sense).

Proof. If e(ar) = 0 then clearly e(e o @) = 0 too; vice versa, if e(e o a) = 0, then the
two ¢/m factorizations (e o o) o 1 = (£ 0 ac) 0 ayy, of € 0 @ must be equal, so that ay,
is the identity; hence a = a., that is @ € &. The proof of m(a) =0 iff m(eoa) =0
is similar. -

For a path K : Y — Z and for 8 : Z — V, let K o 3° be the path obtained
by composing the last arrow of K with 8° (that is, if K = K’ o, then K o 8° is
K’ a0 ).

With a path K : X™ — X (resp. L : X™ — X™), we now associate an R-tree
T(K) (resp. a multiset of R-trees T'(L)) as follows (definition is by induction on the
lengths |K|, |L| of K and L):

T(a) = fya)(®iry---smi,), if ac=(mi,...,m,);
T({a1,...,am)) = {T(a1),...,T(am)};
T(K',a) = fy@)(T(K'oa));
T(L (a1,...,an)) = {T(L' a1),...,T(L an)}.
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Lemma 9.4 Let L:Y — X" and K : X" — X™. We have that
T(L,K) = T(K)(T(L1)/z1,...,T(Lyn)/zn),
where Ly = Lomy,...,L, = Lom,.

Proof. The claim is shown by induction on the length |K| of K. If length is 1, then

K is just a = (a1,...,am); if (a;). is (m].(l),...,mj(k_)), we have
J
T(L,a) = {fx(aj)(T(Lij(l))v T(Li i (k; )))} =1,..m
= T(a)(T(L1)/xy, ... (L )/%n).
If length is greater than 1, then K is K', « (for a = {(ay,...,an)), so that

T(L,K' ) = {fy@)(T(L,K" o (a;)e)}j=1,..m
= {fxta)(T(K 0 (a;)e)(T(Li) /i) }j=1,...om

by inductive hypothesis; on the other hand

T(K',a)(T(Li)/zi) = {fya)(T(EK" o (aj)e)}j=1,..m(T(Li)/z:)

= {fxta)(T(K 0 (aj)e)(T(Li)/7i) }j=1,...m

and the two members are equal by the inductive definition of substitution. —
Lemma 9.5 Let K' = p(K) for a list of renamings whose first component is iden-
tity;*3we have T(K) = T(K').

Proof. We first collect some easy facts. Fix any path L : Y — Z and a renaming
p: Z — Z. We have:

(i) T(L) = T(L o p);

(ii) for every o = (ai,...,ap) : Z — X™ and for every i =1,...,n, T(L,poa;) =
T(L o p,a;): in fact,

T (L, po ai) = fy(poa;)(T(L o (po ai)e) = fy(a)(T(Lopo(ai)e) = T(Lop,a)
by uniqueness of factorization and Lemma 9.3;
(iii) for every L', T(L,poa, L") =T(Lop,a, L"), by (ii) and Lemma 9.4.

Now let K = ay,...,a5, K' = a},...,a) and let p = {1 = pg,p1,...,p} (recall we
have p;_; o o, = ; o p; for all ). We have

T(K)=T(Kopy) =T(a,...,pp—100p) =T(ou,...,0p_10pp_1,0)) =--- = T(K")

as wanted. =

33Gee Section 4 for these concepts.
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Notice that the above Lemma yields in particular that T(K) = T(K') in case K' is
an alphabetic variant of K: this is important, as we rewrite on equivalence classes of
paths modulo alphabetic variants. Moreover the above Lemma (which will be tacitly
used many times during the termination proof) yields the possibility of replacing K
with any p(K) (where p has identity as first component) when computing T(K):
this allows moving certain arrows to last position in a tuple of arrows, assuming
that certain projections located in an internal position of a path project on last
components, etc (see the Examples of Section 4).

Lemma 9.6 Let 0 = (dy,...,dy) : X™ — X™ be an arrow which is not in &y (i.e.
it is not a projection); suppose that 6. = (m;,,...,m, ) : X™ — X*. We have that
T(5,1xn) > T(02,1xr).

Proof. We have
T(0e, 1xx) = {f10,0)(f10,0)(T5)) }s=in ,....ix

and
T(6,1xn) = {f10,0)(Fxiay) (Tijiry» - - ""’ij(tj)))}jzly---a”’

where we supposed that (d;). = (mj(l),...,mj(lj)>. Now elements of the former
multiset are all distinct and for every s = iy, ...,1, there is j such that s is among
j(1),...,5(;) (otherwise my would be missed in d.). This means in particular that for
such s,j we have fi0)(zs) < fya,) (@i - ,xi].(lj)) (where this inequality is strict
in case the same j corresponds to different s). Consequently the former multiset is
less or equal than the latter. It is strictly less indeed; in fact § cannot be in &, for
two independent reasons: some of the x(d;) is not (0,0) or some projection among
(miy, ..., m, ) appears at least twice in 0. In both cases, this is a sufficient reason for
the latter multiset to be bigger. -

For a path K = aq, ..., ax, we define ¢(K) to be the vector
(T(agy. - ar), T(aq,...,ak—1),...,T(a1))
and for paths K, L, we put
K>L iff ¢(K)>c(L)

where second member refers to the lexicographic extension of >,,. Next Lemma says
that c is ‘almost stable by concatenation’ as a complexity measure:

Lemma 9.7 Let K : X™ — X" and K' : X™ — X" be two paths such that
K > K' (notice that they agree on domains and codomains); then

(i) for every path L having codomain X™, we have L,K > L, K';
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i) suppose that K = Ky, (a1,...,a,), K' = K},{d},...,al) and that T(Ky,a;) >
0 1 n

T(K{,a}) holds for all i = 1,...,n; then for every path R having domain X",
we have K,R > K', R.

Proof. Claim (i) directly follows from Lemmas 9.4, 9.2. Let us show (ii). Here it
is sufficient to prove that if T'(Ky, a;) > T(K],a}) holds for every i = 1,...,n, then
T(K,b) > T(K',b) holds for every b: X" — X (this yields the claim, by induction
on the length of R, because the complexity measure of a path is the vector of trees
associated to left segments of the path itself). Supposing that b, is (m;,,..., 7T, ), we

have
T(K,b) = fx(b)(T(Ko,ail),...,T(Ko,aik))
T(K',b) = fx(b)(T(K(’),agl),...,T(K(’),a;k))

hence T(K,b) > T(K',b) as wanted. =

Theorem 9.8 R and R* are terminating.

Proof. If we have K = K' by rules (R.), then K > K' always holds because such rules
are length-reducing (recall that in lexicographic orders for variable length vectors,
length is principal parameter).

According to the above Lemma, it is sufficient to show that for every other rule
L = R of RT UR, we have both

(1) T(Lom)>T(Rom),
for every i = 1,...,n (here X" is the common codomain of L, R) and
(2) ¢(L) > ¢(R).

Notice that any (R.)-rewrite step is a special case of a (Rpr)*-rewrite step, where
(Rpr)* is the rewrite rule

(Rpr)* a,eoff = aoeg,f8

(here ¢ is any strict projection). Moreover, we know from Lemma 7.2 that any (R,,)
or (R,)"-rewrite step is a composition of a finite number of (R,)*! and of (Rdi™")*-
rewrite steps, where (R,)™! is (any alphabetic variant of)

(Ru)* (a,a),8 = (a,a.),(1 xay)op
and (Rdit1)* is (any alphabetic variant of)

(Rdi*h)* (a,a,a),8 = (a,a),(1 X Ax)op
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Consequently, it is sufficient to prove (1) and (2) for rules (Rpr)*, (R,)*', (Rdit!)*
and (R;,).

Proof of (1) for rule (Rpr)*:
a,eoff = aoeg,f.

Let b any component of 3; as (¢ 0b.) o by, is the factorization of € o b, we have (taking
into account Lemma 9.3):

T(a,e0b) = fypy(T(aoeob,)) =T(xoe,b),
as wanted.

Proof of (2) for rule (Rpr)*: by the previous point, we have T'(a,e o §) =
T(ao e, ); however T(a) > T(a o ¢) because the projection is strict.

Notice that the above established fact that T'(«v,e 0 8) and T'(ao €, 3) are compo-
nentwise equal (together with Lemma 9.4), yields the following important information
to be used in the sequel: let us write K =* K’ in order to express that K’ is obtained
from K by a sequence of (Rpr)*-rewrite steps; we have that3*

(%) K =! K' implies T(K)=T(K').

Proof of (1) for rule (R,)™": first member of the rule is

xn Yz x Py

whereas second member is (let a, = {(e1,...,ex))

xn (werper) g xek (D020

Let b be any component of the vector 3; we first suppose that b, is the identity and
then reduce to this case. If b, is identity, we have

T (e, a),b) = fyw)(T(a) U{T(a)})

T((O(, €1y---, 6k>7 (]' X a’#) ° b) < fX((lxau)Ob) (T(a) U {T(ej)}le”k)
(we put < here, because we do not know what ((1 x a,) o b). is, so we supposed -
worst case - it is identity). We need to prove that T'(a) > T'(e;) for all j = 1,...,k
(then first clause of the definition of orders among our trees applies). Suppose that
a factors as follows

34(x) is shown as follows: suppose that K =>. K’ (in one step); then K = §',L,S” and K’ =
S’ R,S", where L and R are the left and right side of a (Rpr)*-rule. We have that T(L,S") =
T(R,S") because such multisets of trees are obtained by replacing variables in the same multiset of
trees by equal trees (notice that T'(L) and T'(R) are not only equal, but also componentwise equal);
the same happens to T'(S’,L,S") and T(S’,R,S") (only a further substitution is operated to get
them).
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Xm-i—n’ xXm

X

where n = m +n' and «. is (71, ..., m,). We have

T(a) = fx(a)(a717 s 7xm)-

Now observe that each e; factors through a. (in fact, we have a = a. o ((am)eo (am)pu)s
hence, by uniqueness of factorizations, (eq,...,ex) = ae = a. o (amy).), so that

T(ej) < fx(ej)(xl, ces ,xm).

As x(a) = (1,1) and x(e;) = (0, —), * we have T'(a) > Fxte) (@15, m) by second
clause in our definition of order among trees.

Let us now consider the case in which b, is not identity; we apply =-}-rewriting
to both members (being sure that the corresponding trees do not change by (x)). We
have two subcases. In the first subcase Z = Z' x Z" (consequently « is split as o/, ')
and b, is the projection Z’ x Z" x X — 7" x X. We have for first member

(o, 0" a),b =2 (", a), b

and
*

(alaaﬂaae>a (1 X alt) © b :>s (auaae>7 (]- X a#) o bm

for second member, thus reducing to the above special case (now (by,). is identity).
In the second subcase, b, is the projection Z’ x Z" x X — Z". In this case, both
members =}-rewrite to the path ¥ LNy LINS'S

Proof of (2) for rule (R,)™': by the previous point, we have that the multiset of
trees corresponding to the first member of the rule is greater or equal to the multiset
of trees corresponding to the second member. In case they are equal, we need to

compare T'(a,a) and T'(a, a.); as we saw above, the former is greater as a multiset,
because for every component e; of a., we have T'(a) > T'(e;).

Proof of (1) for rule (Rdi*')*: first member of the rule is

vy s o xxx 2

whereas second member is

v @Y 7 o x 1XAX)8 ¢

350f course rule does not apply in case first component of x(a) is 0, because in such a case a would
have trivial e/p factorization as ao 1x.
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Let b be any component of the vector 3; we first suppose that b, is the identity and
then reduce to this case. If b, is identity, we have

T (e, a,a),b) = fyp)(T(a) U{T(a), T(a)})

which is trivially bigger than

Fuxax)ew) (T(@) U{T(a)}) 2 T((a,a), (1 x Ax) ob),

by first clause in definition of order for trees.

If b is not identity, let Z = Z' x Z" (consequently « splits as o/, a”) and let b. be
either i) (mzn, ki, 7%), or ii) (mzn, wk), oriii) (mzn, 7%) or finally iv) 7zv. In the last
three cases both members have a =*-rewriting to the same path (which is (”,a), by,
for ii)-iii) and o, by, for iv)), so the corresponding trees are equal by (x). In the first
case, first member =*-rewrites to (o, a, a), by,, whereas second member = *-rewrites
to (o', a), (1 x Ax) o by,, thus reducing to the above considered special case.

Proof of (2) for rule (Rdi*!)*: by the previous point, we have that the multiset of
trees corresponding to the first member of the rule is greater or equal to the multiset
of trees corresponding to the second member. In case they are equal, we need to
compare T(a, a,a) and T'(a,a): the former is clearly bigger.

Proof of (1) for rule (R;,): we recall that first member of (R;,) is

y Py w7y w7z B

whereas second member is

555 1/ 1. 5m0
y 9%y sz v Yy, yr (R0

(with an extra arrow to the right in case 7 = 1). This rule is subject to the proviso
that 0 cannot be a projection. Let b be any component of §; we first assume that b,
is the identity (and then reduce to this case). We have that

T((’Ya 6>a (O‘77TZ>a b) = fx(b) (T(<77 6>7 <O./, 7TZ>)) = fx(b)(T(h/a 6>a O./) U T(67 1Z))

where U refers to multiset union (notice that we used (*) above in missed intermediate
passages). We do not know what is ((1x d,,)ob).: let so take worst case (it is identity)
and proceed as follows by using () again:

T(<77 57 58>7a x 1, (1 X 5771) °© b) < fx((1><5m)0b)(T(<77 57 58)70[ X ]-)) =
= fx((1x6m)ob) (T ({7, 0), @) UT(de, Lyr)).

This tree is indeed smaller than f, ) (T({v,d),@) UT(4,1z)) (by the first clause of
the definition of trees order): in fact, by Lemma 9.6 we have T'(§,12) > T (e, ly’).
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Let us now turn to the general case (b may not be identity). In such a case, let
us transform both

Yy X0y w72y w7 My x

and

('Ya(;a(; > (1Y2 X(Sm) ob

y D%y z2 5y PNy, x v
by =*-rewriting and then apply (*). Suppose we have Yo =Y, x Y, and Z = Z' x Z"
(consequently § and « are also splitted as ¢’,46” and o', respectlvely) let b factors
as follows:

Yo x Yy x Z'x z" be

Yy x 2"
b bm

X

where b, is the obvious projection. We then have for the first member
(77 6>7 <a7 7TZ>7 b :>: <7a 6Ia 6”>7 <O.’”, 7TZ”>7 b

Let us also split d,, : Y/ — Z' x Z" as #',0" (as a consequence, from (¢',6") = § =
0z 00, we have in particular J. 06" = ¢"); an analogous transformation on the second
member gives

(7,0,0:), @ x 1,(1 x dp) 0 b =7 (7,8',0",0c),a" x 1, (1 x ") 0 by

Let us now factorize 8" = 62 o 0" ; from 4. o 8" = §", by uniqueness of factorizations,
we get 07 = 4§, 06 and &/ = 9” thus by further =*-rewrite steps, we get

(77 6’,6”,65),0{” X 17 (1 X 0”) o bm i: (77 6,76”762{)70{” X 17 (1 X 6;7"1,) © bm

Now
<77 617 51,)7 (a”7 7TZ”>7 bm

and
(77 6,76”76;,%04” X 17 (1 X 6;;7,) o bm

are first and second member of a (R;f,)—rewrite rule and (b, ) is the identity. We can
so reduce to the above particular case, except that now there is no guarantee that
0" is not a projection: this further case has to be considered separately. However in
such a case, 1 x d/' is the identity, §” = ¢" and all what we need is to prove that trees
corresponding to the paths

(%5’ ")

Y Yy x 2" x 2" gy g
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Yy O v w7k 2 x 7" Lyl 7

are the same. Indeed they are both equal to T'({~y, ¢, "), ") UT(8",171) (again by
().

Proof of (2) for rule (R;)): by the previous point, we have that the multiset of
trees corresponding to the first member of the rule is greater or equal to the multiset
of trees corresponding to the second member. This does not prevent from them to
be equal, in some cases; hence, we compare trees corresponding to

y My w72y« 7

and to

y 0 v 2w v Ny, < v

The former is T'({7y, d), a) UT(d, 1) whereas the latter is T'({~y, ), a) UT (0, 1y+): as
0 cannot be a projection, Lemma 9.6 applies, showing that the former is greater. -

From the previous section results, we immediately get:
Corollary 9.9 R is canonical. -

We now compare rewrite systems R* and R: it will turn out that they are
essentially the same, hence in particular canonicity of R will follow.

Lemma 9.10 If K =5, K/, then there exists K" such that K' =7, K" and
K =5, K"

Proof. Statement is proved by noetherian induction on K (with respect to the order
> among paths which has been used in the termination proof). If K = K’, the
statement is trivial; otherwise we have, for some Ky,

K :>R+ K() :>?;2+ K,.
Now there is K, such that
Ky =>;<2+ K(l) and K =g K[I]

(if the = +-step is done by a rule different than (R,)™ this is trivial, otherwise apply
Lemma 7.1). As R" is confluent, there exists K{/ such that

Ky =5+ Ky and K' =4, K{.

As K < K (any kind of rewrite step decreases complexity, as we saw in the termi-
nation proof), we can apply inductive hypothesis to K|, yielding K" such that

K' =%, Kj =25+ K" and K =x K; =% K"

as wanted. =
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Lemma 9.11 If K =% K', then K <5, K'.

Proof. Statement is again proved by noetherian induction on K. The only relevant
case is when we have K =% K’ by a single (R;)—rewrite step, which is covered by
Lemma 7.6 (iii). -

We can finally complete the

Proof of Theorem 5.3. As we know from Proposition 9.8 that R is terminating,
we only have to prove its confluence. Suppose we have that

K =% K' and K =} K"

Then K’ <%, K" by Lemma 9.11; as R* is canonical, K" and K" both =%, -rewrite
to their common normal form N. By Lemma 9.10, there are N’, N such that

N =% N, K =i N
N =45, N", K" =% N"
However N is in RT-normal form, hence N' = N = N” is a path to which K’, K"

both =7 -reduce.

10 Examples and Related Work

In this Section we illustrate our results in concrete cases. First, we gave in Section
5 a definition of constructibility for theories referring to their associated Lawvere
categories. Now we give a useful equivalent purely symbolic definition:

Proposition 10.1 A theory T' = (', Az') is constructible over a theory T = (2, Ax)
iff T' is a conservative extension of T and there exists a class E' of Q' -terms such
that:

(i) E' contains the variables and is closed under renamings of terms;

(i1) for every Q'-term t(z1,...,xy,) there exist a k-minimized Q-term u(z1,...,xy)
and pairwise distinct (with respect to provable identity in T') Q' -terms

V(T T)y ey (T, ooy )
belonging to E' such that

bt = (v, ..., vk);
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(iii) whenever u,u’ are k (resp. k')-minimized Q-terms and we have
o u(vy, ..o op) =o' (V] ..., vp)

for pairwise distinct (wrt T'-provability) terms vi,...,vx € E' and pairwise
distinct (wrt T'-provability) terms v}, ..., v, € E', then k = k' and there is a
permutation o acting on the k-elements set,>% such that

Fop v;(i) = (i=1,...,k) and btru =u(z.q/z;).

Proof. Tf T' is constructible over T, in T’ there is a left extension (&', M) of the
standard weak factorization system (£, M) of T. In order to find E' fulfilling the
above requirements it is sufficient to take the set of terms ¢(z1,...,x,) such that the
equivalence class of ¢ (seen as an arrow X” — X in T') belongs to &'. To see that (i)-
(iii) hold, we only have to show that if an arrow from T like (eq,...,ep) : X" — X™
belongs to &', then the e; are pairwise distinct and, vice versa, that if all e; belong to
&' and are pairwise distinct, then (e1,...,e,) belongs to &’; these facts follow from
Corollary 7.4.

Vice versa, suppose that a class E’ of '-terms fulfilling the above requirements is
given. We define a left extension (£, M) of the standard weak factorization system
(€, M) of T by taking as & the set of arrows (e1,...,e,) : X™ — X™ such that
the e; are represented by distinct (up to provable identity in T”) terms in E'.

First notice that, if @« = (a1,...,a,) € & N'T, then « ia an n-tuple of distinct
projections by an immediate application of (iii) to (the symbolic meaning of) the
commutativity of the squares

y —% . x

(ai)a Ix

Z=X-—X
(ai)#

We can easily factorize arrows a having codomain X (just apply (ii) to find a, and
a,). To factorize arrows (ai,...,a,) : X™ — X™, it is sufficient to factorize each
a; as (€;1,...,€ik;) o p; and then ‘diagonalize’ as follows: let (eq,...,es) be any list
of the distincts elements of {e;;} and let J be a diagonal such that (e;,...,es) 0d =
(€11, -, emk,, ). We factorize (a1, ..., am) as (e1,...,es)o(do(uy X+ X um)). Notice
that 0o (p1 X« -+ X ) is still represented by a minimized vector of terms: in fact, for
every i, as €;ji,...,e;,; are all distinct, 0 composed with the projection from X ki
onto the domain of y; is a projection m; : X* — X% (hence the i-th component of

36Such o is clearly unique given that the v; are distinct.
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do (1 X -+ X ) i8 m; o p;); moreover projections {m;} altogether cannot miss any
component of X* (by the very definition of the list (ey,...,es)).
To show uniqueness of factorizations suppose you have a commutative square

a2

VA Y
o w2

Yo X

M1

with ay,as € £ and pq, ps € M. The aq, as are lists formed by distinct components
(by the definition of the class £’); let us first show that each component a of a;
appears as a component of ay too (and vice versa, so that a; and ao differ only
by a renaming). As p; is represented by a minimized vector of terms, there is a
component s of y1 such that aq o s, contains a; if s is the i-th component of uq, let r
be the corresponding i-th component of p5. By commutativity of the square, we have
(apos.)os, = (agor.)or,; by (iii), there is a renaming p such that aj0s.0p = agor,
and por, = s,. The former shows that a is a component of ao.

We so established that ay, s differ only for a renaming, i.e. that there is a re-
naming p such that a; o p = as. Now p o puo = 1 immediately follows from the
commutativity of the above square and from the following

Claim. If « € £ and 7,0 € T, then € o7 = a0 o implies 7 = 0.

The claim is obvious in case o, T are projections, because the components of «
are distinct. In the general case, it is sufficient to prove the Claim for o,7 having
codomain X; if codomain is X, from (a0 0.) 00, = (a0 7.) o 7,, we have (by (iii))
(a¢oo.)op =aoT, and poT, = 0, for a renaming p. As 0. 0p and 7. are projections,
we just saw (this is the above mentioned obvious case) that o. o p = 7., hence

0O =0:00,=0.0p0T, =T 0T =T

as required. -

We say that T" is effectively constructible over T iff it is constructible over T and
moreover for every term ¢, terms u,vy,...,v; satisfying (ii) above are provided by
a total recursive function. As an immediate corollary to our main Theorem 5.3, we
have:

Theorem 10.2 Suppose that Ty, T> are both effectively constructible over Ty and that
word problems for T}, T, are solvable; then word problem for T\ +1,T» is solvable too.

Proof. By Theorem 3.1, Lemma 4.1, 5.2 and Theorem 5.3, it is sufficient to show
that applicability of rules of R is effective whenever a path is given as a list of
terms, representing their respective equivalence classes (in order to be able to compare
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normal forms, we need also to check that it is effectively recognizable whether two
paths are alphabetic variants each other).

For rules (R%) we need to be able to recognize whether a certain arrow o’ comes
from Ty: this happens iff a, € & (by uniqueness of e/u factorization and by the
fact that & C &;), a fact which is effective by appealing to the solvability of word
problem for 7;.37 For rule (R.) we already observed in Section 5 that e-extraction
is effective in case word problem is decidable. For rule (R,), one just use effective
constructibility, together with the fact that the e/u factorization of {(aq,...,a,) can
be reduced to the e/u factorization of components, see Lemma 7.2. Finally, in order
to apply rules (R;,) (and checking the relative proviso) it is sufficient to be able to
recognize projections, a fact which is reduced once again to solvability of the input
word problems.

Last, we show that it is effectively recognizable whether two paths are alphabetic
variants each other. In case they are both in normal form (which is the relevant case),
there is a quick procedure for that. First, for aq,...,a; to be an alphabetic variant
of B1,...,Br we need k = k’; secondly, as the components of a; and f; are distinct
(because paths are in normal form and (R,) does not apply), it is easily computed -
provided it exists - the renaming p; such that ajop; = f1; at this point, we recursively
need to check whether pfl oag,...,q is an alphabetic variant of S, ..., 8 and so
on. .

Example. Commutative rings with unit are constructible over abelian groups. In
fact terms t(z1,...,x,) in the theory of abelian groups can be represented as homo-
geneous linear polynomials in the indeterminates x1,...,x, with integer coefficients
(they are minimized iff no coefficient is zero); terms in the theory of commutative
rings with unit can be represented as arbitrary polynomials with integer coefficients.
Class E' needed for constructibility is formed by monic monomials (1 included): in
fact, every integer polynomial can be uniquely expressed as a linear combination (with
integer non-zero coefficients) of distinct monic monomials.

Example. Let T be the theory of join-semilattices with zero and let 7" be the
theory of semilattice-monoids we met in the Introduction. T" is constructible over T':
class E' is given by terms of the form z;, o---ox;, (for k> 0).

Example The theory of abelian groups endowed with an endomorphism f is
constructible over the theory of abelian groups: class E’ is given by terms of the form
f"(z;) (for n > 0).

Example Differential rings (i.e. of rings endowed with a differentiation operator
0 satisfying usual laws for derivatives of sums and products) are constructible over
commutative rings with unit: class E' is given by terms of the form {0¥z;} (for k& > 0).

37Clearly if term t represents a : X" — X, then a is a projection iff ¢ collapses to (ie. it is
provably equal to) a variable z; (for i = 1,...,n); a similar observation applies to vector of terms.
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Notice that in the above examples the smaller theory is not collapse-free. Addi-
tional examples of different nature can be found in [3, 4]. In order to build counterex-
amples, a useful tool is the following Proposition (clearly inspired from [3, 4]):

Proposition 10.3 If T' is constructible over T, then the T-reduct of any free T'-
algebra is a free T-algebra (on a bigger set of generators).

Proof. Let Fr/(G) be the free T'-algebra on the set G of generators; we show that its
T-reduct is free over the set of elements of the form u(g1, ..., g,) where u(zy,...,z,) €
E'and ¢y,..., g, are distinct elements from G. Clearly the claim follows from the case
in which G is finite. To have a quick proof we translate everything in the terminology
of functorial semantics.

Let (£, M) be the standard weak factorization system of T and let (£', M) be
its left extension to T'. For any functor F having domain T’ let us call |F| its
restriction to T; for any type Y let £'(Y,X) be T/(Y,X)NE'. Fix a type Y and a
T-algebra A : T — Set; we need to find a bijective natural correspondence between
set-theoretic functions

N:&'(V,X) — A(X)

and natural transformations
N :|T'(Y,-)] — A.

Given N, let N be the restriction of Nx to £(Y, X) in the domain. Conversely, if N
is given, we define for every Z and a: Y — Z

Nz(a) = A(ay)(N(er),...,N(ex))

where o, = (€1, ..., ex). Inorder to prove naturality of N so defined, take v : Z — Z'
in T; we need to show the commutativity of the square

T(v, 2)| 2 4(2)
IT(Y, V) AWw)
(Y. Z)| 7, A(Z)

We have

AW)(Nz(e)) = AW)(A(ew) (N(er), .., Nex))) = Al o v)(N(er), ..., N(e))-

On the other hand, let o, o v factorize in ¢/p-components as follows:
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Xk Z
i v
xm 7'
where © = (m;,,...,m, ). We have
Nz (|T(Y,v)(a)]) = Nz (aov)
— Np(agomon)
= A(u)(N(ei,),---, N(eiy))
= A(u)(A(m)(N(e1),--., N(ex)))
= A(mop)(N(e1),...,N(ex))
= A(apov)(N(er),..., N(ex)).
Bijectivity and naturality of the correspondence N <— N are immediate. -

Counterexample. Boolean algebras are not constructible over join-semilattices
with zero. In fact the free join-semilattice with zero over an infinite set G of generators
is just the set of finite subsets of G; in this algebra, clearly the strict part of the
partial order relation associated with the join is terminating. It is not so however in
the countably generated free Boolean algebra, which is atomless.

Counterexample. Modal algebras (also K4-modal algebras, interior algebras,
diagonalizable algebras, etc.) are not constructible over Boolean algebras: in fact, in
such varieties, finitely generated free algebras are atomic and infinite,?® whereas free
Boolean algebras are either finite or atomless.

Let us now give examples of normalization through our rewriting system R. In
order to apply normalization to paths of equivalence classes of terms, algebraic nota-
tion for rules must be converted into ordinary symbolic notation. This is not difficult
(all needed information is contained in Section 2 above), however some care is needed.
Suppose e.g. you want to apply products rule to the path

(tv u> X2 (’U, I2> w

X2 X

X3

First u(z1, 22, z3) has to be minimized (this is the factorization § = d. o d,, in the
Table of rules of Section 5). Suppose it minimizes as u'(z1, z3); the pair of projections
(x1,3) stays in first position, whereas u'(z1, z2) is moved in third position. However,
the term moved to last position for composition with w(zy,z2) (the arrow 1 X 6, of

%8 These are well-known results. For a proof making use of normal forms, see [7].
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the Table of rules), requires a renaming away from z; and consequently it is the pair
(x1, u'(z2,23)). Thus the products rule rewrite step produces

<t7 Uu, I17I3> <U7 zs3, I4> 71)(1'1, ul($27$3))

X3 )& X3

In the examples below we consider the following theories:
To = Abelian groups with period 2
Ty = Boolean rings

To = Ty + an idempotent endomorphism f (i.e., such that f(f(z1)) = f(z1))

We leave to the reader to check that T7,T5 are both constructible over Tj.

Example. Let us consider the following instance of word problem in the theory
T1 +T0 T2:

fl@y o+ 3o+ f(m2)) = fl1 - 32)

Let us rewrite a splitting path of first member in R.

x? (z1, T2, f(22)) X3 Ty To+ To+ T3 X f(z1) X
IR,

X2 (z1, 22, f(22)) X3 (z1 - T2, T2, x3) X3 fz1 + 22+ x3) X
$mz)

2 (w1, 22, f(22), T2) x4 (T1 - T2, T2, 24) X3 f(z1 4+ 22+ f(23)) ¥
IR,

x? (z1, T2, 2) X3 (z1 - T2, T2, x3) X3 f(z1 4+ z2 + f(z3))
Y(ry)

X2 (x1 - T2, T2, T2) X3 f(z1 4+ 22 + f(23)) x
IR,

x2 (71 - @2, 29) o fEtmt fl)
IR,

2 T1 -T2 X f(z1) X

where the last path corresponds to the splitting path of the term f(zq - z2).
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Example. Let us consider the following instance of word problem for T} +7, T5:

F(@1) - fx2) + (1) - (Flan) + flz2)) = fla)

We rewrite first member as follows.

X (f(z1), f(@2), f(z1) + f(22)) X3 (1 - 39, 21 - w3) o TitT
IR,

e (f(z1), f(22)) X2 (T1, T2, 1 + @2) 0 (T1 - T2, X1 - T3) 2 T + 9 X
X2 (f(z1), f(z2)) X2 (71 - 39, 1 - (31 + 22)) 2 21 + 29 X
IR,

e (f(z1), f(22)) X2 (1 - 2, 1) X2 (21, 1 + 22) 0 (21 + 2) X
X2 (f($1)a f($2)> X2 <$1 * T2, $1> 2 T+ X1+ o X
VR,

e (f(z1), f(z2)) e (1 -T2, 1) 0T x T X
X2 (f(z1), [(z2)) 2 T1 Y 1 X
bn2)

X2 fz) X

where the last path coincides with the second term of the problem. H

We now make a comparison with results from [3, 4]. Let T' = (2, Az) and T" =
(¥, Az') be equational theories such that 7" is a conservative extension of T'. Let G
be the set of {'-terms r such that Fp r = t for all Q'-terms ¢ with top symbol in
Q. Notice that G # 0 iff V C G, where V is the set of variables. Moreover, G is
empty in case T is not collapse-free. We say that T" is BT-constructible over T iff
the following hold:

(I) V C G (hence T is collapse-free);
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(IT) for all '-term ¢, there are an Q-term s and a vector 7 of terms in G such that
Frr t = s(7);

(ITT) for every pair s1, so of Q-terms and for every pair of vectors 77,73 of terms from
G, we have

Frros1(r1) = so(ra) i bFpos1(21) = s2(23)

where 71, z3 are fresh vectors of variables abstracting 77,75 so that two terms
in 77,75 are abstracted by the same variable iff they are provably equal in T".

We now show that if T is BT-constructible over T, then T' is constructible over T
(in our sense). We use Proposition 10.1 above taking E' = G. Let us first show
uniqueness of factorizations. Suppose that we have k (resp. k')-minimized Q-terms
u,u’ and that we have b w(vi,...,vp) = «'(v],...,v},) for pairwise distinct (wrt
T’-provability) terms vy,...,v; € G and pairwise distinct (wrt T’-provability) terms
v},...,V € G. Let wy,...,w, be the terms which are common to the lists vy, ..., vy
and v},...,v,. For simplicity, let us also rearrange such lists as

! ! ! !
Vlyeooy Uk = Wiynony,WsyT1,...77 aDd 07,000 U = Wiy o, Wey Ty e, Tp
Then, applying (III), we get
!
Fru(Ty, . Ty Yty e oy Y1) = U (L1 e ooy Tgy 21y ney 21)

which cannot be (unless | = I’ = 0, yielding what we need) because u and u' are
minimized: in fact, replacing e.g. all the y; by a ground term ¢ we would get

Frw(zr, ... sy CyevyC) = U (T1,0 ooy gy 215y 2p) = U(T1y ey Ty Y1y e Y)

contrary to the fact that u is minimized.

Showing the existence of factorization is a little more tricky because the require-
ments in (IT) above look more liberal than those in Proposition 10.1(ii) (it is not
asked for s to be minimized, not for the 7 to be distinct (up to probability) and
to contain only at most the variables of the original ¢). We progressively refine the
factorization in (II). First, if we have (let #=ry,...,rg) b t = s(rq,...,r) for non
distinct 7, then we can identify variables in s(z1, ..., x;) and reduce correspondingly
the list 7q,...,7 to a list formed by distinct elements. If furthermore s(zq,...,zy)
is not minimized, then we can minimize it and remove the corresponding r; from
the list. Thus we obtained a factorization of #(z1,...,z,) as s(ry,...,ry) where s
is k-minimized and the r; are pairwise distinct (up to provability in T") terms of G.
Suppose that the r; contain additional variables, say that they contain variables from
Z1y..., Tk, ¥; we have (let &= xzq,...,xp)

o t(f) = 3(r1(fa ?7)7 S 77'16(57 flj))

81



Let Z be renamings of the i; we get
Fopr t(Z2) = s(r (4, 2), ..., re (%, 2))

hence
.

Frr s(r(Z, )

—
9.

e () = s(ri(Z, 2), ... k(2 2)).

We can now apply (III) to this situation; as s is minimized we must have
Fre i (@, §) = i, 2)

for all i = 1,...,k (eventually up to a permutation). Replacing all the ¢ by ground
terms ¢ (we may use the same ground term for all of them), we get

}_T’ ’f‘i(f,a ZTi(f,Z) rl(f7:17)

Now r;(Z, ¢) is provably equal to r;(Z, %), hence as the latter is in G so is the former
(G is closed under provably identical terms according to its definition). For the same
reason, all the r;(Z, ¢) are pairwise distinct (with respect to provable identity in T")

—

because so are the r;(Z, 7). We finally get
F t(f) = S(Tl(fa E)a cee 7Tk(faé))

which is a factorization matching all the requirements from Proposition 10.1(ii).

Summing up, the difference between the definition of constructibility of [3, 4] and
ours, lies in the fact that we do not need any specific definition for the class E’ of
terms used in factorizations.

The refinement factorization technique we used above for comparison with BT-
constructibility is interesting by itself. Combining it with the proof of Proposition
10.3, it is not difficult to get the following third characterization of constructibility:

Proposition 10.4 Let T' be a conservative extension of T. We have that T’ is
constructible over T iff the T-reduct of any T'-free algebra Fr(G') is a free T-algebra
over a set of generators G such that

.« ¢'CG

e G is invariant under the T'-isomorphisms of Fr(G') which are the extension
of a bijection on the set of free generators G'.

To finish, let us mention some possible directions for future research. Of course,
there is the problem of extending our results to combined unification. Secondly, one
may try to generalize combined word problems to the case in which the definition of
constructibility is related to a weak factorization system of the smaller theory which
may not be the standard one (that is, class & is supposed to be larger than the
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class of projections). Results from Section 6 are still valid, however it is not clear
what happens with critical pairs arising from superpositions with products rule. Such
enlargements of the definition of constructibility are important because they could
cover additional mathematically relevant examples. Finally, although quite difficult,
it would be essential to be able to deal with theories extending T} 4+, T with further
axioms. In principle, as our combination algorithm is obtained through rewriting, one
may try to apply some form of Knuth-Bendix completion to get decision procedures
in such situations too.

References

1]

[5]

H. Andréka, A. Kurucz, I. Németi, I. Sain, and A. Simon. Causes and remedies
for undecidability in arrow logics and in multi-modal logics. In Arrow logic and
multi-modal logic, pages 63—99. CSLI Publ., Stanford, CA, 1996.

F. Baader and T. Nipkow. Term rewriting and aoll that. Cambridge University
Press, Cambridge, 1998.

F. Baader and C. Tinelli. Deciding the word problem in the union of equational
theories. Technical Report UTUCDCS 98-2073, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1998.

F. Baader and C. Tinelli. Deciding the word problem in the union of equational
theories sharing constructors. In Rewriting techniques and applications (Trento,

1999), pages 175-189. Springer, Berlin, 1999.

E. Domenjoud, F. Klay, and C. Ringeissen. Combination techniques for nondis-
joint equational theories. In Proc. CADE-12, volume 814 of Springer LNAI
pages 48—64, 1996.

P. J. Freyd and G. M. Kelly. Categories of continuous functors. I. Journal of
Pure and Applied Algebra, 2:169-191, 1972.

S. Ghilardi. An algebraic theory of normal forms. Annals of Pure and Applied
Logic, 71(3):189-245, 1991.

S. Ghilardi and G. C. Meloni. Modal logics with n-ary connectives. Z. Math.
Logik Grundlag. Math., 36(3):193-215, 1990.

F. William Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad.
Sci. U.S.A., 50:869-872, 1963.

Christoph Liith and Neil Ghani. Monads and modular term rewriting. In Cate-
gory theory and computer science (Santa Margherita Ligure, 1997), pages 69-86.
Springer, Berlin, 1997.

83



[11] T. Nipkow. Combining matching algorithms: the regular case. J. Symbolic
Comput., 12(6):633-653, 1991.

[12] Don Pigozzi. The join of equational theories. Collog. Math., 30:15-25, 1974.

84



