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• Cluster analysis or clustering is the task of grouping a 
set of objects in such a way that objects in the same 
group (called a cluster) are more similar (in some 
sense or another) to each other than to those in 
other groups (clusters). 

 

 

 

 

Clustering 
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• In pattern recognition and machine learning, a 
feature vector is an n-dimensional vector of 
numerical features that represent some object. 

 

• In topology and related branches of mathematics, a 
topological space is a set of points, along with a set 
of neighbourhoods for each point, that satisfy a set 
of axioms relating points and neighbourhoods. 

 

 

 

Useful definitions 
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• k-means  

• Kohonen Self Organising Feature Maps (SOMs) 

• Neural Gas 

• Growing Neural Gas 

 

 

 

 

Some clustering methods 
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• Iterative method 
1. Create random values for Uv and Cv 

2. Compute Un that minimizes V(U, Cv) 

3. Compute Cn that minimizes V(Uv, C) 

4. If the algorithm does not converge, Uv = Un, Cv = Cn, step 2 

 

k-means 
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Matrix  representing the patitions ui,j  (binary values 
that define if the sample j pertain to the cluster i) 

Vector of the centroids (k elements) 



SOMs 
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• Each node has a specific 
topological position (an x, y 
coordinate in the lattice) and 
contains a vector of weights of 
the same dimension as the 
input vectors. That is to say, if 
the training data consists of 
vectors, V,  of n dimensions: 
 

• V1, V2, V3...Vn 

 
• Then each node will contain a 

corresponding weight vector W, 
of n dimensions: 
 

• W1, W2, W3...Wn 



1. Initializing The Weights 

2. Calculating the Best Matching Unit 

3. Determining the Best Matching Unit's Local 
Neighbourhood 

4. Adjusting the Weights 

 

 

 

The learning algorithm (1/4) 
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The learning algorithm (2/4) 

• Initializing The Weights 
– Prior to training, each node's weights must be initialized. 

Typically these will be set to small standardized random 
values. The weights in the SOM from the accompanying 
code project are initialized so that 0 < w < 1.  

 

• Calculating the Best Matching Unit (BMU) 

𝐷𝑖𝑠𝑡 =   𝑉𝑖 −𝑊𝑖
2

𝑖=𝑛

𝑖=0
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The learning algorithm (3/4) 

• Determining the Best Matching Unit's Local 
Neighbourhood 

𝜎 𝑡 =  𝜎0 exp −
𝑡

𝜆
                  𝑡 = 1,2,3,… 
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The learning algorithm (4/4) 

• Adjusting the Weights 

– Every node within the BMU's neighbourhood (including 
the BMU) has its weight vector adjusted according to the 
following equation: 

 𝑊 𝑡 + 1 = 𝑊 𝑡 + 𝐿(𝑡)Θ(𝑡)(𝑉 𝑡 −𝑊 𝑡 ) 

     where 

 𝐿 𝑡 =  𝐿0 exp −
𝑡

𝜆
                  𝑡 = 1,2,3,… 

  Θ 𝑡 = exp − 
𝑑𝑖𝑠𝑡2

2𝜎2(𝑡)
              𝑡 = 1,2,3,… 
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SOMs: demo 
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• DemoGNG (Version 1.5) 

 

 

 

 

 

 
– http://sund.de/netze/applets/gng/full/GNG-U_0.html 

– http://www.demogng.de/JavaPaper/node1.html 

 

http://sund.de/netze/applets/gng/full/GNG-U_0.html
http://sund.de/netze/applets/gng/full/GNG-U_0.html
http://sund.de/netze/applets/gng/full/GNG-U_0.html
http://sund.de/netze/applets/gng/full/GNG-U_0.html
http://www.demogng.de/JavaPaper/node1.html
http://www.demogng.de/JavaPaper/node1.html


SOMs in Matlab 
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• Basic concepts 
– http://www.mathworks.it/help/nnet/gs/cluster-data-

with-a-self-organizing-map.html 

 

• Parameters 
– http://www.mathworks.it/help/nnet/ug/cluster-with-

self-organizing-map-neural-network.html 
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• Iris clustering 
– http://www.mathworks.it/help/nnet/examples/iris-clustering.html  

 

• Iris clustering 
%Step1 : load 
load iris.dat; 
setosa = iris((iris(:,5)==1),:);        % data for setosa 
versicolor = iris((iris(:,5)==2),:);    % data for versicolor 
virginica = iris((iris(:,5)==3),:);     % data for virginica 
obsv_n = size(iris, 1);                 % total number of observations 
P = iris(:,1:4)'; 
 
%Step2 : plot in 2D 
Characteristics = {'sepal length','sepal width','petal length','petal width'}; 
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4]; 
h = figure('Name','Dati iniziali'); 
for j = 1:6, 
    x = pairs(j, 1); 
    y = pairs(j, 2); 
    subplot(2,3,j); 
    plot([setosa(:,x) versicolor(:,x) virginica(:,x)],... 
         [setosa(:,y) versicolor(:,y) virginica(:,y)], '.'); 
    xlabel(Characteristics{x}); 
    ylabel(Characteristics{y}); 
end 
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Exercise 

ny = 1; 
nx = 3; 
net = selforgmap([ny nx]); 
nCluster = ny * nx; 
view(net) 
 
[net,tr] = train(net,P); 
nntraintool 
 
y = net(P); 
cluster_index = vec2ind(y); 
 
figure 
for j = 1:3 
    subplot(1,3,j); 
    hist( cluster_index(find(iris(:,5)==j))); 
    xlabel('cluster') 
    ylabel('n. samples') 
    title(sprintf('class %i', j)) 
 end 

http://www.mathworks.it/help/nnet/examples/iris-clustering.html
http://www.mathworks.it/help/nnet/examples/iris-clustering.html
http://www.mathworks.it/help/nnet/examples/iris-clustering.html


Neural Gas (1/2) 

• Given a probability distribution P(x) of data vectors x and a finite number 
of feature vectors wi, i=1,...,N. 

• With each time step t a data vector randomly chosen from P is presented. 
Subsequently, the distance order of the feature vectors to the given data 
vector x is determined. i0 denotes the index of the closest feature vector, i1 
the index of the second closest feature vector etc. and iN-1 the index of the 
feature vector most distant to x. Then each feature vector (k=0,...,N-1) is 
adapted according to 

 𝑤𝑖𝑘
𝑡+1 = 𝑤𝑖𝑘

𝑡 + 𝜖 ∙ 𝑒−
𝑘

𝜆  ∙ 𝑥 − 𝑤𝑖𝑘
𝑡  

 
• with ε as the adaptation step size and λ as the so-called neighborhood 

range. ε and λ are reduced with increasing t. After sufficiently many 
adaptation steps the feature vectors cover the data space with minimum 
representation error. 

• The adaptation step of the neural gas can be interpreted as gradient 
descent on a cost function 
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• Test 
% Input data 

circle = load('local_sphere_shell'); 

P = circle.Data; 

 

figure 

plot3(P(1,:), P(2,:), P(3,:), '.') 

title('Input'); 

xlabel('x') 

ylabel('y') 

zlabel('z') 

grid on 

axis square 

 

% neural gas 

nIt                  = 100;  

Ei                   = .05; 

Ef                   = .005; 

Li                   = 350; 

Lf                   = .5; 

nCluster = 500; 

Y = ngas(P', nCluster, nIt, Li, Lf, Ei, Ef); 

Y = Y'; 
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Neural Gas (2/2)  
 
% Plot the results 

figure 

plot3(P(1,:), P(2,:), P(3,:), '.') 

hold on 

plot3(Y(1,:), Y(2,:), Y(3,:), '.r') 

title('Output'); 

xlabel('x') 

ylabel('y') 

zlabel('z') 

grid on 

axis square 

 

• Function ngas() was 
provided by 

    Prof. Stefano Ferrari 
 

 



• B. Fritzke, “ A growing neural gas network learns 
topologies,” Advances in Neural Information Processing 
Systems 7 (NIPS’94), MIT Press, Cambridge, MA, pp. 625-
632, 1995 

(http://web.cs.swarthmore.edu/~meeden/Development

alRobotics/fritzke95.pdf ). 

 

• Toolbox 

– http://www.mathworks.it/matlabcentral/fileexchange
/43665-unsupervised-learning-with-growing-neural-
gas--gng--neural-network  
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Growing Neural Gas (GNG)  
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