
Genetic Algorithms
Using Matlab

Ruggero Donida Labati

Dipartimento di Tecnologie dell’Informazione

via Bramante 65, 26013 Crema (CR), Italy
ruggero.donida@unimi.it

Why?

2 © Ruggero Donida Labati 2013

Classical Algorithm Genetic Algorithm

Generates a single point at
each iteration. The
sequence of points
approaches an optimal
solution.

Generates a population of
points at each iteration.
The best point in the
population approaches an
optimal solution.

Selects the next point in
the sequence by a
deterministic computation.

Selects the next population
by computation which uses
random number
generators.

Genetic algorithms can be used to solve a variety of optimization
problems that are not well suited for standard optimization algorithms,
including problems in which the objective function is discontinuous,
nondifferentiable, stochastic, or highly nonlinear.

The schema

© Ruggero Donida Labati 2013 3

Matlab

• Global Optimization Toolbox™

• Calling the Function ga at the Command Line

– [x fval] = ga(@fitnessfun, nvars, options)

• Using the Optimization Tool

– optimtool('ga')

© Ruggero Donida Labati 2013 4

© Ruggero Donida Labati 2013 5

Example — Rastrigin's Function
 • For two independent variables, Rastrigin's function is

defined as

© Ruggero Donida Labati 2013 6

• Global minimum?

• Tehoretical:

– x = 0;

– y = 0;

– z = 0;

• Fitness function = @rastriginsfcn

• Number of variables = 2

Displaying Plots

© Ruggero Donida Labati 2013 7

Initial Population

• Population size

– Intial = 20

• Range

– Initial = [0;1]

© Ruggero Donida Labati 2013 8

Creating the Next Generation
• The genetic algorithm creates three types of

children for the next generation:

– Elite children

– Crossover children

– Mutation children

© Ruggero Donida Labati 2013 9

Stopping Conditions for the Algorithm
1/2

© Ruggero Donida Labati 2013 10

Stopping Conditions for the Algorithm
2/2

• Generations — The algorithm stops when the number of generations reaches the
value of Generations.

• Time limit — The algorithm stops after running for an amount of time in seconds
equal to Time limit.

• Fitness limit — The algorithm stops when the value of the fitness function for the
best point in the current population is less than or equal to Fitness limit.

• Stall generations — The algorithm stops when the weighted average change in the
fitness function value over Stall generations is less than Function tolerance.

• Stall time limit — The algorithm stops if there is no improvement in the objective
function during an interval of time in seconds equal to Stall time limit.

• Function Tolerance — The algorithm runs until the weighted average change in the
fitness function value over Stall generations is less than Function tolerance.

• Nonlinear constraint tolerance — The Nonlinear constraint tolerance is not used as
stopping criterion. It is used to determine the feasibility with respect to nonlinear
cnstraints.

© Ruggero Donida Labati 2013 11

Creating the Custom Plot Function
 function state = gaplotchange(options, state, flag)

% GAPLOTCHANGE Plots the logarithmic change in the best score from the previous
% generation.

persistent last_best % Best score in the previous generation
if(strcmp(flag,'init')) % Set up the plot
 set(gca,'xlim',[1,options.Generations],'Yscale','log');
 hold on;
 xlabel Generation
 title('Change in Best Fitness Value')
end
best = min(state.Score); % Best score in the current generation
if state.Generation == 0 % Set last_best to best.
 last_best = best;
else
 change = last_best - best; % Change in best score
 last_best=best;
 plot(state.Generation, change, '.r');
 title(['Change in Best Fitness Value'])
end
© Ruggero Donida Labati 2013 12

 @gaplotchange

Resuming the Genetic Algorithm
from the Final Population 1/2

• Export to Workspace from the File menu

• Import Problem from the File menu

© Ruggero Donida Labati 2013 13

Resuming the Genetic Algorithm
from the Final Population 2/2

• New test…

© Ruggero Donida Labati 2013 14

Using the Genetic Algorithm from the
Command Line

• [x fval] = ga(@fitnessfun, nvars)
– @fitnessfun — A function handle to the M-file that computes the

fitness function.
– nvars — The number of independent variables for the fitness function.
– x — The final point
– fval — The value of the fitness function at x

• [x fval exitflag output population scores] = ga(@fitnessfcn, nvars)
– exitflag — Integer value corresponding to the reason the algorithm

terminated
– output — Structure containing information about the performance of

the algorithm at each generation
– population — Final population
– scores — Final scores

© Ruggero Donida Labati 2013 15

Running ga from an M-File

options = gaoptimset('Generations',300);
rand('twister', 71); % These two commands are only included to
randn('state', 59); % make the results reproducible.
record=[];
for n=0:.05:1
 options = gaoptimset(options,'CrossoverFraction', n);
 [x fval]=ga(@rastriginsfcn, 10,[],[],[],[],[],[],[],options);
 record = [record; fval];
end

plot(0:.05:1, record);
xlabel('Crossover Fraction');
ylabel('fval')

© Ruggero Donida Labati 2013 16

Example: Coding and Minimizing
a Fitness Function 1/2

 Here we want to minimize a simple function of
two variables

 min f(x) = 100 * (x(1)^2 - x(2)) ^2 + (1 - x(1))^2;

 x

© Ruggero Donida Labati 2013 17

Example: Coding and Minimizing
a Fitness Function 2/2

• Fitness function
– function y = simple_fitness(x)

 y = 100 * (x(1)^2 - x(2)) ^2 + (1 - x(1))^2;

• Parametrized Fitness function
– function y = parameterized_fitness(x,a,b)

 y = a * (x(1)^2 - x(2)) ^2 + (b - x(1))^2;

• FitnessFunction =
@(x)parameterized_fitness(x,a,b)

© Ruggero Donida Labati 2013 18

Constrained Minimization Problem 1/2

 We want to minimize a simple fitness function of
two variables x1 and x2

 min f(x) = 100 * (x1^2 - x2) ^2 + (1 - x1)^2;
 x
 such that the following two nonlinear constraints

and bounds are satisfied
 x1*x2 + x1 - x2 + 1.5 <=0, (nonlinear constraint)
 10 - x1*x2 <=0, (nonlinear constraint)
 0 <= x1 <= 1, and (bound)
 0 <= x2 <= 13 (bound)

© Ruggero Donida Labati 2013 19

Constrained Minimization Problem 2/2

• Fitness function
– function y = simple_fitness(x)
 y = 100 * (x(1)^2 - x(2)) ^2 + (1 - x(1))^2;

• Constraint function
– function [c, ceq] = simple_constraint(x)

 c = [1.5 + x(1)*x(2) + x(1) - x(2); -x(1)*x(2) + 10];
ceq = [];

• Bounds

– Lower = [0 0]

– Upper = [1 13]

© Ruggero Donida Labati 2013 20

Exercise 1
• What is the minimum of the function shufcn in

[-2,2; -2,2]?

figure, plotobjective(@shufcn,[-2 2; -2 2]);

 © Ruggero Donida Labati 2013 21

-2

-1

0

1

2 -2

-1

0

1

2
-200

-100

0

100

200

300

Exercise 2
• We want to minimize a fitness function of two variables x1 and x2
 min f(x) = a * (x1^3 - x2)^2 + b - x1;
 x
 such that the following two nonlinear constraints and bounds are

satisfied
 x1*x2 + x1 - x2 + 0.7 <=0, (nonlinear constraint)
 8 - x1*x2 <=0, (nonlinear constraint)
 0 <= x1 <= 1, and (bound)
 0 <= x2 <= 13 (bound)

• a = 20 and b = 3
• a = 5 and b = 2

• plot_ex2.m

© Ruggero Donida Labati 2013 22 0
0.2

0.4
0.6

0.8
1

0

5

10

15
0

1000

2000

3000

4000

Multiobjective Optimization
Using the GA (1/2)

• GAMULTIOBJ can be used to solve multiobjective
optimization problem in several variables. Here we
want to minimize two objectives, each having one
decision variable.

 min F(x) = [objective1(x); objective2(x)]
 x

 where,
 objective1(x) = (x+2)^2 - 10, and
 objective2(x) = (x-2)^2 + 20

© Ruggero Donida Labati 2013 23

Multiobjective Optimization
Using the GA (2/2)

• Fitness function
– function y = simple_multiobjective(x)
 y(1) = (x+2)^2 - 10;
 y(2) = (x-2)^2 + 20;

• Multiobjective Optimization
% Plot two objective functions on the same axis
x = -10:0.5:10;
f1 = (x+2).^2 - 10;
f2 = (x-2).^2 + 20;
plot(x,f1);
hold on;
plot(x,f2,'r');
grid on;
title('Plot of objectives ''(x+2)^2 - 10'' and ''(x-2)^2 + 20''');

FitnessFunction = @simple_multiobjective;
numberOfVariables = 1;
[x,fval] = gamultiobj(FitnessFunction,numberOfVariables);

fprintf('\nRESULTS\n');
fprintf('x\t\t\tfval\n');
for i = 1 : size(x,1)
 fprintf([num2str(x(i)), '\t\t\t', num2str(fval(i)), '\n']);
end

© Ruggero Donida Labati 2013 24

Custom Data Type Optimization
Using the Genetic Algorithm

• Traveling Salesman Problem

© Ruggero Donida Labati 2013 25

