
Neural Networks
for Classification

Ruggero Donida Labati

Dipartimento di Tecnologie dell’Informazione

via Bramante 65, 26013 Crema (CR), Italy
ruggero.donida@unimi.it

© Ruggero Donida Labati 2013 1

G.P. Zhang, "Neural networks for classification: a survey,“ in IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol.30, no.4, pp.451- 462, November 2000.

• Classification is one of the most frequently
encountered decision making tasks of human
activity.

• A classification problem occurs when an object
needs to be assigned into a predefined group or class
based on a number of observed attributes related to
that object.

Classification

2

© Ruggero Donida Labati 2013

G.P. Zhang, "Neural networks for classification: a survey,“ in IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol.30, no.4, pp.451- 462, November 2000.

Classification with NN
• Neural networks have emerged as an important tool

for classification.

• Advantages:
– NN are data driven self-adaptive methods in that they can

adjust themselves to the data without any explicit
specification of functional or distributional form for the
underlying model

– NN are universal functional approximators in that neural
networks can approximate any function with arbitrary
accuracy

– NN are non-linear models, which makes them flexible in
modeling real world complex relationships

3 © Ruggero Donida Labati 2013

Examples of classification with NN

• Some our works

– Acute Limphoblastic Leucemia

• "healty cell" & "lymphoblast“

– Wildfires

• "Smoke frame" & "not smoke frame"

– Wood

• 21 classes

© Ruggero Donida Labati 2013 4

Classification with NN in Matlab

• We will use:

– Neural Network Toolbox

– Feedforward Neural Networks

5 © Ruggero Donida Labati 2013

Exercise 1 (1)

• Two classes classification of these data

6

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

x

y

Input data

A

B

© Ruggero Donida Labati 2013

Exercise 1 (2)

• We will

– train a neural classifier

– evaluate the obtained results in a graphical mode

– evaluate the obtained error (mean, standard deviation)

– change the parameters of the neural network

– change the number of the input points

– add noise to the input data

7 © Ruggero Donida Labati 2013

Output space

x

y

A=0

B=1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exercise 1 (3)
• Example of results

TRAINING
n. of el. = 200
n. of errors = 7
mean error = 0.035000
std error = 0.184241

TESTING
n. of el. = 200
n. of errors = 2
mean error = 0.010000
std error = 0.099748

TOTAL
n. of el. = 400
n. of errors = 9
mean error = 0.022500
std error = 0.148489

8 © Ruggero Donida Labati 2013

Exercise 2 (1)

• Four classes classification of these data

9

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

x

y

Input data

A

B

© Ruggero Donida Labati 2013

Exercise 2 (2)
• Example of results

TRAINING
n. of el. = 400
n. of errors = 2
mean error = 0.005000
std error = 0.070622

TESTING
n. of el. = 400
n. of errors = 1
mean error = 0.002500
std error = 0.050000

TOTAL
n. of el. = 800
n. of errors = 3
mean error = 0.003750
std error = 0.061161

10

Output space

x

y

A=0

B=1

C=2

D=3

-0.5

0

0.5

1

1.5

2

2.5

3

© Ruggero Donida Labati 2013

Confusion matrix (1)

• A confusion matrix is a visualization tool typically
used in supervised learning

• Each column of the matrix represents the instances in
a predicted class, while each row represents the
instances in an actual class

11 © Ruggero Donida Labati 2013

• Two classes

– True positives (TP) - the number of elements correctly
classified as positive by the test;

– True negatives (TN) - the number of elements correctly
classified as negative by the test;

– False positive (FP) - also known as type I error, is the
number of elements classified as positive by the test, but
they are not;

– False positive (FN) - also known as type II error, is the
number of elements classified as negative by the test, but
they are not.

Confusion matrix (2)

12 © Ruggero Donida Labati 2013

• Identify the sex of crabs from physical dimensions of
the crab.
– Six physical characterstics of a crab are considered:

species, frontallip, rearwidth, length, width and depth.

• Problem:
– 2 classes
– 6 features

• The goal is to use the confusion matrix in a practical
example

• MATLAB DEMO
– http://www.mathworks.it/products/neural-

network/demos.html?file=/products/demos/shipping/nnet/classify_crab_demo.html

Exercise 3

13 © Ruggero Donida Labati 2013

http://www.mathworks.it/products/neural-network/demos.html?file=/products/demos/shipping/nnet/classify_crab_demo.html
http://www.mathworks.it/products/neural-network/demos.html?file=/products/demos/shipping/nnet/classify_crab_demo.html
http://www.mathworks.it/products/neural-network/demos.html?file=/products/demos/shipping/nnet/classify_crab_demo.html

• A neural network that can classify wines from three
wineries by thirteen attributes:
– Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium,

Total phenols, Flavanoids, Nonflavanoid phenols,
Proanthocyanins, Color intensity, Hue, OD280/OD315 of
diluted wines, Proline

• The goal is to use the confusion matrix with more
than two classes

• MATLAB DEMO
– http://www.mathworks.it/products/neural-

network/demos.html?file=/products/demos/shipping/nnet/classify_wine_demo.ht
ml

Exercise 4

14 © Ruggero Donida Labati 2013

http://www.mathworks.it/products/neural-network/demos.html?file=/products/demos/shipping/nnet/classify_wine_demo.html
http://www.mathworks.it/products/neural-network/demos.html?file=/products/demos/shipping/nnet/classify_wine_demo.html
http://www.mathworks.it/products/neural-network/demos.html?file=/products/demos/shipping/nnet/classify_wine_demo.html
http://www.mathworks.it/products/neural-network/demos.html?file=/products/demos/shipping/nnet/classify_wine_demo.html

Cross Validation

• Cross-validation, sometimes called rotation
estimation is a model validation technique for
assessing how the results of a statistical
analysis will generalize to an independent data
set.

• Cross-validation is important in guarding
against testing hypotheses suggested by the
data, especially where further samples are
hazardous, costly or impossible to collect.

© Ruggero Donida Labati 2013 15

k-Fold Cross Validation

• Algorithm
– In k-fold cross-validation, the original sample is randomly partitioned

into k equal size subsamples.
– Of the k subsamples, a single subsample is retained as the validation

data for testing the model, and the remaining k − 1 subsamples are
used as training data.

– The cross-validation process is then repeated k times (the folds), with
each of the k subsamples used exactly once as the validation data.

– The k results from the folds then can be averaged (or otherwise
combined) to produce a single estimation.

• The advantage of this method over repeated random sub-
sampling is that all observations are used for both training
and validation, and each observation is used for validation
exactly once.

• 10-fold cross-validation is the most commonly used.

© Ruggero Donida Labati 2013 16

k-Fold Cross Validation:
Matlab script

TC = []; % T computed (results of NN)

TR = []; % T real(targets)

% k-fold validation is not automatic...

net.divideFcn = 'dividerand'; % Divide data randomly

net.divideMode = 'sample'; % Divide up every sample

net.divideParam.trainRatio = 1;

net.divideParam.valRatio = 0;

net.divideParam.testRatio = 0;

© Ruggero Donida Labati 2013

% NEURAL NETWORK TRAINING AND K-FOLD VALIDATION

indices = crossvalind('Kfold', T ,k);

for i = 1: k

 % indexes of the testing and training elements

 test1 = (indices == i);

 test = find(test1 > 0);

 traini1 = ~test1;

 traini = find(traini1 > 0);

 % train a neural network

 [net,tr,Y,E] = train(net,P(:, traini), T(traini));

 % test

 testResultK = net(P(:,test));

 ind0 = find(testResultK < 0.5);

 testResultK(ind0) = 0;

 ind1 = find(testResultK >= 0.5);

 testResultK(ind1) = 1;

 % add elements to the global vectors TR and TC

 TR = [TR, T(test)];

 TC = [TC, testResultK];

end

17

k-Fold Cross Validation:
Exercise

© Ruggero Donida Labati 2013

• Exercise 3 with 10-Fold Cross Validation

• Compare the previously obtained results and
the ones obtained using 10-Fold Cross
Validation

18

