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• Classification is one of the most frequently 
encountered decision making tasks of human 
activity. 

• A classification problem occurs when an object 
needs to be assigned into a predefined group or class 
based on a number of observed attributes related to 
that object. 
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Classification with NN 
• Neural networks have emerged as an important tool 

for classification. 

• Advantages: 
– NN are data driven self-adaptive methods in that they can 

adjust themselves to the data without any explicit 
specification of functional or distributional form for the 
underlying model 

– NN are universal functional approximators in that neural 
networks can approximate any function with arbitrary 
accuracy 

– NN are non-linear models, which makes them flexible in 
modeling real world complex relationships 
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Examples of classification with NN 

• Some our works 

– Acute Limphoblastic Leucemia 

• "healty cell" & "lymphoblast“ 

 

– Wildfires 

• "Smoke frame" & "not smoke frame" 

 

– Wood 

• 21 classes 
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Classification with NN in Matlab 

• We will use: 

– Neural Network Toolbox 

– Feedforward Neural Networks 
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Exercise 1 (1) 

• Two classes classification of these data 

 

 

 

 

 

 

 

 
6 

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

x

y

Input data

 

 

A

B

© Ruggero Donida Labati 2013 



Exercise 1 (2) 

• We will 

– train a neural classifier 

– evaluate the obtained results in a graphical mode 

– evaluate the obtained error (mean, standard deviation) 

– change the parameters of the neural network 

– change the number of the input points 

– add noise to the input data 
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Exercise 1 (3) 
• Example of results 

  
TRAINING 
n. of el. = 200  
n. of errors = 7  
mean error = 0.035000  
std error = 0.184241  
 
TESTING 
n. of el. = 200  
n. of errors = 2  
mean error = 0.010000  
std error = 0.099748  
 
TOTAL 
n. of el. = 400  
n. of errors = 9  
mean error = 0.022500  
std error = 0.148489  
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Exercise 2 (1) 

• Four classes classification of these data 

 

 

 

 

 

 

 

 
9 

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

x

y

Input data

 

 

A

B

© Ruggero Donida Labati 2013 



Exercise 2 (2) 
• Example of results 

  
TRAINING 
n. of el. = 400  
n. of errors = 2  
mean error = 0.005000  
std error = 0.070622  
 
TESTING 
n. of el. = 400  
n. of errors = 1  
mean error = 0.002500  
std error = 0.050000  
 
TOTAL 
n. of el. = 800  
n. of errors = 3  
mean error = 0.003750  
std error = 0.061161  
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Confusion matrix (1) 

• A confusion matrix is a visualization tool typically 
used in supervised learning  

 

• Each column of the matrix represents the instances in 
a predicted class, while each row represents the 
instances in an actual class 
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• Two classes 
 
 
 

 

– True positives (TP) - the number of elements correctly 
classified as positive by the test; 

– True negatives (TN) - the number of elements correctly 
classified as negative by the test; 

–  False positive (FP) - also known as type I error, is the 
number of elements classified as positive by the test, but 
they are not; 

– False positive (FN) - also known as type II error, is the 
number of elements classified as negative by the test, but 
they are not. 

 

Confusion matrix (2) 
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• Identify the sex of crabs from physical dimensions of 
the crab. 
– Six physical characterstics of a crab are considered: 

species, frontallip, rearwidth, length, width and depth. 
  

• Problem: 
– 2 classes 
– 6 features 

 

• The goal is to use the confusion matrix in a practical 
example 

 

• MATLAB DEMO 
– http://www.mathworks.it/products/neural-

network/demos.html?file=/products/demos/shipping/nnet/classify_crab_demo.html 
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• A neural network that can classify wines from three 
wineries by thirteen attributes: 
– Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, 

Total phenols, Flavanoids, Nonflavanoid phenols, 
Proanthocyanins, Color intensity, Hue, OD280/OD315 of 
diluted wines, Proline  
 

• The goal is to use the confusion matrix with more 
than two classes 

 

• MATLAB DEMO 
– http://www.mathworks.it/products/neural-

network/demos.html?file=/products/demos/shipping/nnet/classify_wine_demo.ht
ml 
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Cross Validation 

• Cross-validation, sometimes called rotation 
estimation is a model validation technique for 
assessing how the results of a statistical 
analysis will generalize to an independent data 
set.  

• Cross-validation is important in guarding 
against testing hypotheses suggested by the 
data, especially where further samples are 
hazardous, costly or impossible to collect. 
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k-Fold Cross Validation 

• Algorithm 
– In k-fold cross-validation, the original sample is randomly partitioned 

into k equal size subsamples. 
– Of the k subsamples, a single subsample is retained as the validation 

data for testing the model, and the remaining k − 1 subsamples are 
used as training data. 

– The cross-validation process is then repeated k times (the folds), with 
each of the k subsamples used exactly once as the validation data. 

– The k results from the folds then can be averaged (or otherwise 
combined) to produce a single estimation. 

• The advantage of this method over repeated random sub-
sampling is that all observations are used for both training 
and validation, and each observation is used for validation 
exactly once. 

• 10-fold cross-validation is the most commonly used. 
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k-Fold Cross Validation: 
Matlab script 

TC = []; % T computed (results of NN) 

TR = []; % T real(targets) 

 

% k-fold validation is not automatic... 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.trainRatio =  1; 

net.divideParam.valRatio =  0; 

net.divideParam.testRatio = 0; 
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% NEURAL NETWORK TRAINING AND K-FOLD VALIDATION 

indices = crossvalind('Kfold', T ,k); 

   

for i = 1: k 

   % indexes of the testing and training elements 

    test1 = (indices == i); 

    test = find(test1 > 0); 

    traini1 = ~test1; 

    traini = find(traini1 > 0); 

     % train a neural network 

    [net,tr,Y,E] = train(net,P(:, traini), T(traini)); 

    % test 

    testResultK = net(P(:,test)); 

    ind0 = find(testResultK < 0.5); 

    testResultK(ind0) = 0; 

    ind1 = find(testResultK >= 0.5); 

    testResultK(ind1) = 1; 

    % add elements to the global vectors TR and TC 

    TR = [TR, T(test)]; 

    TC = [TC, testResultK]; 

end 
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k-Fold Cross Validation: 
Exercise 
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• Exercise 3 with 10-Fold Cross Validation 

 

• Compare the previously obtained results and 
the ones obtained using 10-Fold Cross 
Validation  
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