

Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: **Wednesday 13.30 - 16.30 in classroom Alfa**

Thursday 09.30 - 12.30 in classroom Alfa

Office hours: **on appointment**

E-mail: **roberto.cordone@unimi.it**

Web page: **<https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html>**

Ariel site: **<https://myariel.unimi.it/course/view.php?id=7439>**

Genetic algorithms

Algorithm GeneticAlgorithm($I, X^{(0)}$)

$\Xi := \text{Encode}(X^{(0)})$; $x^* := \arg \min_{x \in X^{(0)}} f(x)$; { Best solution found so far }

For $g = 1$ to n_g do

$\Xi := \text{Selection}(\Xi)$;

$\Xi := \text{Crossover}(\Xi)$;

$x_c := \arg \min_{\xi \in \Xi} f(x(\xi))$;

If $f(x_c) < f(x^*)$ then $x^* := x_c$;

$\Xi := \text{Mutation}(\Xi)$;

$x_m := \arg \min_{\xi \in \Xi} f(x(\xi))$;

If $f(x_m) < f(x^*)$ then $x^* := x_m$;

EndFor;

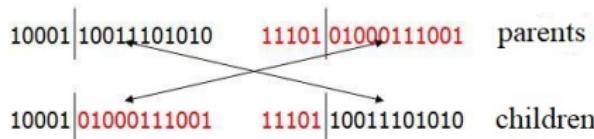
Return $(x^*, f(x^*))$;

Crossover

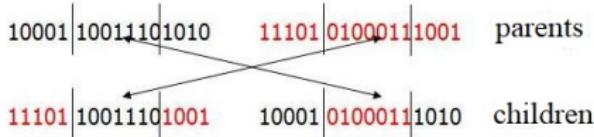
The **crossover** operator **combines $k \geq 2$ individuals to generate other k**

The most common ones set $k = 2$ and are

- **simple crossover:**
 - extract a random position with uniform probability
 - split the encoding in two parts at the extracted position
 - exchange the final parts of the encodings of the two individuals



- **double crossover:**
 - extract two positions at random with uniform probability
 - split the encoding in three parts at the extracted positions
 - exchange the extreme parts of the encodings of the two individuals



Crossover

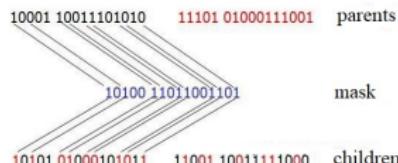
Generalizing, one obtains the

- α points crossover:
 - extract α positions at random with uniform probability
 - split the encoding in $\alpha + 1$ parts at the extracted positions
 - exchange the odd parts of the encodings of the two individuals (first, third, etc. . .)

For small values of α , this implies a **positional bias**:
symbols close in the encoding tend to remain close

To cancel this bias, one can adopt the

- **uniform crossover**:
 - build a random binary vector $m \in U(\mathbb{B}^n)$ ("mask")
 - if $m_i = 1$ exchange the symbols in position i of the two individuals, if $m_i = 0$ keep them unmodified



Crossover versus Scatter Search and Path Relinking

The crossover operator resembles the recombination phase of *SS* and *PR*

The main differences are that

- ① it recombines the symbols of the encodings, instead of
 - recombining the solutions (*SS*)
 - performing a chain of exchanges on the solutions (*PR*)
- ② it operates on the whole population, instead of only a reference set R
- ③ it operates on random pairs of individuals, instead of methodically scanning all pairs of solutions of R
- ④ it generates a pair of new individuals, instead of
 - generating a single intermediate solution (*SS*)
 - visiting the intermediate solutions and choosing the best one (*PR*)
- ⑤ the new individuals enter the population directly, instead of becoming candidates for the reference set

However, classifying an operator can be a matter of taste

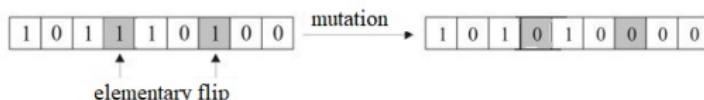
Mutation

The **mutation** operator modifies an individual to generate a similar one

- scan encoding ξ one symbol at a time
- decide with probability π_m to modify the current symbol

The kind of modification usually depends on the encoding

- **binary encodings:** flip ξ_i into $\xi'_i := 1 - \xi_i$



- **symbol strings:** replace ξ_c with a random symbol $\xi'_c \in B_c \setminus \{\xi_c\}$ selected with a uniform probability
- **permutations:** there are many proposals
 - exchange two random elements in the permutation (*swap*)
 - reverse the stretch between two random positions of the permutation
 - ...

Mutation versus exchange heuristics

The mutation operator has strong relations with exchange operations

The main differences are that

- ① it modifies the symbols of an encoding, instead of exchanging elements of a solution
- ② it operates on random symbols, instead of exploring a neighbourhood systematically
- ③ it operates on a random subset of symbols of size unknown *a priori*, somewhat like sampling a very large scale neighbourhood, instead of exchanging a fixed number of elements
- ④ it operates on random individuals, instead of all solutions
- ⑤ the new individuals enter the population directly, instead of becoming candidates for the reference set

However, classifying an operator can be a matter of taste

The feasibility problem

If the encoding is not fully invertible, **crossover and mutations sometimes generate encodings that do not correspond to feasible solutions**

We distinguish between

- **feasible encodings** that correspond to feasible solutions
- **unfeasible encodings** that correspond to legal, but unfeasible subsets

The existence of unfeasible encodings implies several disadvantages:

- **inefficiency**: computational time is lost handling meaningless objects
- **ineffectiveness**: the heuristic explores less solutions (possibly, none)
- **design problems**: fitness must be defined also on unfeasible subsets

There are three main approaches to face this problem

- ① **special encodings and operators** *(avoid or limit infeasibility)*
- ② **repair procedures** *(turn infeasibility into feasibility)*
- ③ **penalty functions** *(accept infeasibility, but discourage it)*

Special encodings and operators

The idea is to investigate

- **encodings that (nearly) always yield feasible solutions**, such as
 - permutation encodings and order-first split-second decodings for partition problems (*CMSTP*, *VRP*, etc. . .)
 - permutation encodings and constructive heuristic decodings for scheduling problems (*PMSP*, . . .)
- **crossover and mutation operators that maintain feasibility**, such as
 - specialised operators (*Order* or *PMX* crossover for the *TSP*)
 - operators that simulate moves on solutions (*k*-exchanges)

These methods

- tend to closely approximate exchange and recombination heuristics based on the concept of neighbourhood
- give up the idea of abstraction and focus on the specific problem, contrary to classical genetic algorithms

Repair procedures

A **repair procedure** is a refined decoder function $x_R : \Xi \rightarrow X$ that

- decodes any encoding ξ into a possibly unfeasible solution $x(\xi) \notin X$
- transforms subset $x(\xi)$ into a feasible solution $x_R(\xi) \in X$
- returns $x_R(\xi)$

The procedure is applied to each unfeasible encoding $\xi \in \Xi^{(g)}$

- in some methods, the encoding $x_R(\xi)$ replaces ξ in $X^{(g)}$
- in other ones, ξ remains in $\Xi^{(g)}$ and $x_R(\xi)$ is used only to update x^*

The methods of the first family

- maintain a population of feasible solutions

but they introduce

- a strong bias in favour of feasible encodings
- a bias in favour of the feasible solutions most easily obtained with the repair procedure

Penalty functions: measuring the infeasibility

If the objective function is extended to unfeasible subsets $x \in 2^B \setminus X$,
the fitness function $\phi(\xi)$ can be extended to any encoding, but
many unfeasible subsets have a fitness larger than the optimal solution

The selection operator tends to favour such unfeasible subsets

To avoid that, the fitness function must combine

- the objective value $f(x(\xi))$
- a measure of infeasibility $\psi(x(\xi))$

$$\begin{cases} \psi(x(\xi)) = 0 \text{ if } x(\xi) \in X \\ \psi(x(\xi)) > 0 \text{ if } x(\xi) \notin X \end{cases}$$

If the constraints of the problem are expressed by equalities or inequalities,
 $\psi(x)$ can be defined as a weighted sum of their violations

*How to define the weights?
Are they fixed, variable or adaptive?*

Penalty functions: definition of the fitness

The most typical combinations are

- **absolute penalty**: minimise ψ and f lexicographically;
given two encodings ξ and ξ' in a rank or tournament selection
 - choose the less unfeasible one
 - if they are equally unfeasible (e. g., both feasible), choose the better
- **proportional penalty**: use a linear combination of f and ψ

$$\varphi(\xi) = f(x(\xi)) - \alpha\psi(x(\xi)) + M \quad \text{for maximisation problems}$$

$$\varphi(\xi) = -f(x(\xi)) - \alpha\psi(x(\xi)) + M \quad \text{for minimisation problems}$$

where $\alpha > 0$ and offset M guarantees $\varphi(\xi) \geq 0$ for all encodings

- **penalty obtained by repair**, that is keep the unfeasible encoding, but derive its fitness from the objective value of the repaired solution

$$\varphi(\xi) = f(x_R(\xi)) \text{ or } \varphi(\xi) = UB - f(x_R(\xi))$$

since usually $f(x_R(\xi))$ is worse than $f(x(\xi))$

Proportional penalty functions: weight tuning

Experimentally, it is better to use the smallest effective penalty

- if the penalty is too small, too few feasible solutions are found
- if the penalty is too large, the search is confined within a part of the feasible region (*“hidden” feasible solutions are hard to find*)

A good value of the parameter α tuning the penalty can be found with

- **dynamic methods**: increase α over time according to a fixed scheme (*first reach good subsets, then enforce feasibility*)
- **adaptive methods**: update α depending on the situation
 - increase α when unfeasible encodings dominate the population
 - decrease α when feasible encodings dominate
- **evolutionary methods**: encode α in each individual, in order to select and refine both the solution and the algorithm parameter

Memetic algorithms

Memetic algorithms (Moscato, 1989) are inspired by the concept of **meme** (Dawkins, 1976) that is a **basic unit of reproducible cultural information**

- genes are selected only at the phenotypic expression level
- memes also adapt directly, as in Lamarckian evolution

Out of the metaphor, **memetic algorithms combine**

- “**genotypic**” operators that manipulate the encodings (crossover and mutation)
- “**phenotypic**” operators that manipulate the solutions (local search)

In short, **the solutions are improved with exchanges before reencoding**

Several parameters determine how to apply local search

- how often (at every generation, or after a sufficient diversification)
- to which individuals (all, the best ones, the most diversified ones)
- for how long (until a local optimum, beyond, or stopping before)
- with what method (steepest descent, VNS, ILS, etc. . .)

Evolution strategies

They have been proposed by Rechenberg and Schwefel (1971)

The main differences with respect to classical genetic algorithms are:

- the solutions are encoded into **real vectors**
- a small population of μ individuals generate λ candidate descendants
(originally, $\mu = 1$)
- the new individuals compete to build the new population
 - in the (μ, λ) strategy the best μ descendants replace the original population, even if some are dominated
 - in the $(\mu + \lambda)$ strategy the best μ individuals overall (predecessors or descendants) survive in the new population
- the mutation operator **sums to the** encoding a random noise with a **normal distribution of zero average**

$$\xi' := \xi + \delta \text{ with } \delta \in N(0, \sigma)$$

- originally, the crossover operator was not used *(now it is)*

The **random-key genetic algorithm** (Bean, 1994) use real-vector encodings and decode procedures based on sorting the real numbers