Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone
DI - Universita degli Studi di Milano

Schedule: Wednesday 13.30 - 16.30 in classroom Alfa
Thursday 09.30 - 12.30 in classroom Alfa

Office hours: on appointment

E-mail: roberto.cordone@unimi.it
Web page: https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
Ariel site: https://myariel.unimi.it/course/view.php?id=7439
Lesson 23: Recombination metaheuristics: GA (2) Milano, A.A. 2025/26 }
1/15

https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
https://myariel.unimi.it/course/view.php?id=7439

Genetic algorithms

Algorithm GeneticAlgorithm (I, X(O))
= := Encode(X(®); x* := argxren)i(r(mo) f(x); { Best solution found so far }
Forg: 1 to ng do
= := Selection(Z);
= := Crossover(=);

Xc 1= arg gnég f(x(&))

i .h

f(xc) < f(x*) then x* := x;
:= Mutation(Z);
Xm = arggggf(x &)
If f (xm) < f (x*) then x* := Xm;
EndFor;
Return (x*, f (x*));

2/15

Crossover

The crossover operator combines k > 2 individuals to generate other k

The most common ones set k = 2 and are
® simple crossover:

® extract a random position with uniform probability
® split the encoding in two parts at the extracted position
® exchange the final parts of the encodings of the two individuals

10001‘100 101010 11101|01000111001 parents
10001|01000111001 11101|10011101010 children

® double crossover:

® extract two positions at random with uniform probability
® split the encoding in three parts at the extracted positions
® exchange the extreme parts of the encodings of the two individuals

10001‘100 1010 11101|010 11‘1001 parents

11101‘10011141001 10001‘01000141010 children

3/15

Crossover

Generalizing, one obtains the
® « points crossover:
® extract a positions at random with uniform probability
® split the encoding in « + 1 parts at the extracted positions

® exchange the odd parts of the encodings of the two individuals
(first, third, etc...)

For small values of «, this implies a positional bias:
symbols close in the encoding tend to remain close

To cancel this bias, one can adopt the
® uniform crossover:

® build a random binary vector m € U (B") (“mask”)
® if m; =1 exchange the symbols in position i of the two individuals,
if mi =0 keep them unmodified

10001 w011\101010 11101 01000111001 parents
NN

NN
\\&\
b %ﬁ)\g mask
~

4

10101 01000101011 11001 10011111000 children

4/15

Crossover versus Scatter Search and Path Relinking

The crossover operator resembles the recombination phase of SS and PR

The main differences are that
@ it recombines the symbols of the encodings, instead of

® recombining the solutions (SS)
® performing a chain of exchanges on the solutions (PR)

@ it operates on the whole population, instead of only a reference set R

© it operates on random pairs of individuals, instead of methodically
scanning all pairs of solutions of R

O it generates a pair of new individuals, instead of

® generating a single intermediate solution (SS)
® visiting the intermediate solutions and choosing the best one (PR)

@ the new individuals enter the population directly,
instead of becoming candidates for the reference set

However, classifying an operator can be a matter of taste

5/15

The mutation operator modifies an individual to generate a similar one

® scan encoding £ one symbol at a time
® decide with probability 7, to modify the current symbol

The kind of modification usually depends on the encoding

® binary encodings: flip & into §/ :=1—¢;

ot [1 [e[io o] ™o , [To i [l of6]o]o]
: ry

elementary flip

® symbol strings: replace & with a random symbol &, € B.\ {{c}

selected with a uniform probability

® permutations: there are many proposals
® exchange two random elements in the permutation (swap)
® reverse the stretch between two random positions of the permutation

6/15

Mutation versus exchange heuristics

The mutation operator has strong relations with exchange operations

The main differences are that

@ it modifies the symbols of an encoding,
instead of exchanging elements of a solution

@ it operates on random symbols,
instead of exploring a neighbourhood systematically

© it operates on a random subset of symbols of size unknown a priori,
somewhat like sampling a very large scale neighbourhood,
instead of exchanging a fixed number of elements

O it operates on random individuals, instead of all solutions

@ the new individuals enter the population directly,
instead of becoming candidates for the reference set

However, classifying an operator can be a matter of taste

7/15

The feasibility problem

If the encoding is not fully invertible, crossover and mutations sometimes
generate encodings that do not correspond to feasible solutions

We distinguish between
® feasible encodings that correspond to feasible solutions

® unfeasible encodings that correspond to legal, but unfeasible subsets

The existence of unfeasible encodings implies several disadvantages:
® inefficiency: computational time is lost handling meaningless objects
® ineffectiveness: the heuristic explores less solutions (possibly, none)

® design problems: fitness must be defined also on unfeasible subsets

There are three main approaches to face this problem

® special encodings and operators (avoid or limit infeasibility)
@ repair procedures (turn infeasibility into feasibility)
© penalty functions (accept infeasibility, but discourage it)

8/15

Special encodings and operators

The idea is to investigate
® encodings that (nearly) always yield feasible solutions, such as

® permutation encodings and order-first split-second decodings
for partition problems (CMSTP, VRP, etc...)

® permutation encodings and constructive heuristic decodings
for scheduling problems (PMSP,. . .)

® crossover and mutation operators that maintain feasibility, such as

® specialised operators (Order or PMX crossover for the TSP)
® operators that simulate moves on solutions (k-exchanges)

These methods

® tend to closely approximate exchange and recombination heuristics
based on the concept of neighbourhood

® give up the idea of abstraction and focus on the specific problem,
contrary to classical genetic algorithms

9/15

Repair procedures

A repair procedure is a refined decoder function xg : = — X that
® decodes any encoding £ into a possibly unfeasible solution x (§) ¢ X
e transforms subset x (&) into a feasible solution xg (§) € X

® returns xg (&)

The procedure is applied to each unfeasible encoding & € =(&)
* in some methods, the encoding & (xg (£)) replaces & in X(&)

® in other ones, & remains in =(&) and xg (&) is used only to update x*

The methods of the first family

® maintain a population of feasible solutions
but they introduce

® a strong bias in favour of feasible encodings

® a bias in favour of the feasible solutions most easily obtained
with the repair procedure

10/15

Penalty functions: measuring the infeasibility

If the objective function is extended to unfeasible subsets x € 2B \ X,
the fitness function ¢ (&) can be extended to any encoding, but
many unfeasible subsets have a fitness larger than the optimal solution

The selection operator tends to favour such unfeasible subsets

To avoid that, the fitness function must combine
® the objective value f (x (€))

® a measure of infeasibility ¢ (x (£))

B (x(€)) = 0 if x(€) € X
B (x(€)) > 0if x (&) ¢ X

If the constraints of the problem are espressed by equalities or inequalities,
1 (x) can be defined as a weighted sum of their violations

How to define the weights?
Are they fixed, variable or adaptive?

11/15

Penalty functions: definition of the fitness

The most typical combinations are

® absolute penalty: minimise 1 and f lexicographically;
given two encodings £ and &’ in a rank or tournament selection

® choose the less unfeasible one
® if they are equally unfeasible (e. g., both feasible), choose the better

® proportional penalty: use a linear combination of f and v
e(§)=1F(x(§)—ayv(x(§)+ M for maximisation problems

(&) =—f(x(§)—arv(x(€))+ M for minimisation problems

where @ > 0 and offset M guarantees ¢ (£) > 0 for all encodings

® penalty obtained by repair, that is keep the unfeasible encoding,
but derive its fitness from the objective value of the repaired solution

@ (&) = f(xr (§)) or ¢ (§) = UB — f (xr (£))

since usually f (xg (£)) is worse than f (x (£))

12/15

Proportional penalty functions: weight tuning

Experimentally, it is better to use the smallest effective penalty
® if the penalty is too small, too few feasible solutions are found

e if the penalty is too large, the search is confined within a part of the
feasible region (“hidden” feasible solutions are hard to find)

A good value of the parameter « tuning the penalty can be found with
® dynamic methods: increase « over time according to a fixed scheme
(first reach good subsets, then enforce feasibility)
® adaptive methods: update o depending on the situation

® increase o when unfeasible encodings dominate the population
® decrease « when feasible encodings dominate

® evolutionary methods: encode « in each individual, in order to select
and refine both the solution and the algorithm parameter

13/15

Memetic algorithms

Memetic algorithms (Moscato, 1989) are inspired by the concept of meme
(Dawkins, 1976) that is a basic unit of reproducible cultural information

® genes are selected only at the phenotypic expression level
® memes also adapt directly, as in Lamarckian evolution

Out of the metaphor, memetic algorithms combine

® ‘“genotypic”’ operators that manipulate the encodings
(crossover and mutation)

® “phenotypic” operators that manipulate the solutions (local search)

In short, the solutions are improved with exchanges before reencoding

Several parameters determine how to apply local search
® how often (at every generation, or after a sufficient diversification)
® to which individuals (all, the best ones, the most diversified ones)

for how long (until a local optimum, beyond, or stopping before)
with what method (steepest descent, VNS, ILS, etc...)

14/15

Evolution strategies

They have been proposed by Rechenberg and Schwefel (1971)

The main differences with respect to classical genetic algorithms are:
® the solutions are encoded into real vectors
® a small population of x4 individuals generate A\ candidate descendants
(originally, p = 1)
® the new individuals compete to build the new population
® in the (i, \) strategy the best 1 descendants replace the original
population, even if some are dominated

® in the (u + \) strategy the best u individuals overall (predecessors or
descendants) survive in the new population

® the mutation operator sums to the encoding a random noise with a
normal distribution of zero average

& =&+ 0 withd € N(0,0)

® originally, the crossover operator was not used (now it is)

The random-key genetic algorithm (Bean, 1994) use real-vector encodings
and decode procedures based on sorting the real numbers

15/15

