Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone
DI - Universita degli Studi di Milano

Schedule: Wednesday 13.30 - 16.30 in classroom Alfa
Thursday 09.30 - 12.30 in classroom Alfa

Office hours: on appointment

E-mail: roberto.cordone@unimi.it
Web page: https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
Ariel site: https://myariel.unimi.it/course/view.php?id=7439
Lesson 22: Recombination metaheuristics: GA (1) Milano, A.A. 2025/26 }
1/13

https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
https://myariel.unimi.it/course/view.php?id=7439

Recombination heuristics

Constructive and exchange heuristics manage one solution at a time
(except for the Ant System)

Recombination heuristics manage several solutions in parallel
® start from a set (population) of solutions (individuals) obtained somehow
® recombine the individuals generating a new population

Their original aspect is the use of operations working on several solutions,
but they often include features of other approaches (sometimes renamed)

Some are nearly or fully deterministic
® Scatter Search
® Path Relinking
others are strongly randomised (often based on biological metaphors)
® genetic algorithms
® memetic algorithms
® evolution strategies

Of course the effectiveness of a method does not depend on the metaphor

2/13

Encoding-based algorithms

Many recombination heuristics define and manipulate encodings of the solutions
(i.e., compact representations), rather than the solutions

Solution space Encoding space = {0,1}Bl

Encoding
1001000
10010010
010001001 |
«——— | [011101001
Decoding

The aims of this approach are

® abstraction: conceptually distinguishing the method from the problem to
which it is applied

® generality: build operators effective on every problem represented with a
given family of encodings

In a strict sense, every representation of a solution in memory is an encoding:
the term “encoding” tends to be used for the more involved and compact ones
The difference is blurred

3/13

Genetic algorithm

The genetic algorithm, proposed by Holland (1975), is the most famous

It builds and encodes a population X(©), and repeatedly applies:
@ selection: generate a new population starting from the current one
@ crossover: recombine subsets of two or more individuals
©® mutation: modify the individuals

Algorithm GeneticAlgorithm (I, X(O))

== Encode(X(O)); x* 1= arg mir(\o) f(x); { Best solution found so far }
xeX

For g =1 to ng do

= := Selection(Z);

:= Crossover(Z);

Xe 1= arg min f(x ()

If f (xc) < f(x*) then x* := x;
= := Mutation(Z);
xm 1= argmin f (x (€));
If f (xm) < f (x*) then x* := Xm;
EndFor,
Return (x*, f (x*));

4/13

Features of a good encoding

The performance of a genetic algorithm depends on the encoding

The following properties should be satisfied (with decreasing importance)

@ cach solution should have an encoding, except for dominated ones;
otherwise, there would be unreachable solutions

@ different solutions should have different encodings
(or the best solution with a given encoding should be easy to find);
otherwise, there would be unreachable solutions

® each encoding should correspond to a feasible solution;
otherwise, the population would include useless individuals

O each solution should correspond to the same number of encodings;
otherwise, some solutions would be unduly favoured

@ the encoding and decoding operations should be efficient,
otherwise, the algorithm would be inefficient

@ locality: small changes to the encoding should induce small changes
to the solution, otherwise intensification and diversification would be
impossible

These conditions depend very much on the constraints of the problem
(so much for abstraction. . .)
5/13

Feasible and unfeasible encodings

Mutation and crossover operators easily produce unfeasible subsets
if property 3 is not satisfied; this may imply the violation of

@ quantitative constraints (e.g., a capacity is exceeded)
@® structural constraints (e.g., the solution is not made of circuits)
The distinction is conventional

The second kind of infeasibility is harder to repair, because
it concerns constraints that interact more strongly with each other

Some encodings guarantee structural (though not quantitative) feasibility

N
P.Q
W

encoding space

6/13

Encodings: the incidence vector

The most direct encoding for Combinatorial Optimisation problems is the
binary incidence vector ¢ € BIE|

& =1 indicates that / € x
& = 0 indicates that i ¢ x

A generic binary vector corresponds
® in the KP to a set of objects: its weight could be excessive
® in the SCP to a set of columns: it could leave uncovered rows

® in the PMSP and in the BPP to a set of assignments of tasks (objects) to
machines (containers): it could make zero or more assignments for an
element; in the BPP, it could violate the capacity of some container;

® in the TSP to a set of arcs: it could not form a Hamiltonian circuit

® in the CMSTP (VRP) to a set of edges (arcs): it could not form a tree
(set of cycles), or exceed the capacity of the subtrees (circuits)

7/13

Encodings: symbolic strings

If the ground set is partitioned into components
(objects, tasks, Boolean variables, vertices, nodes. . .)

B= U B. with B.N B = () for each ¢ # ¢’
ceC
and the feasible solutions contain one element of each component

|x N Bc| =1 for each ¢

one can
® define for each ¢ € C an alphabet of symbols describing component B
® encode the solution into a string of symbols { € By x ... B¢

& = a indicates that x N Bc = {(c, o)}

Examples of encodings:
® Max-SAT: a string of n Boolean values, one for each logical variable
® PMSP: a string of machine labels, one for each task
® BPP/CMSTP: a string of container/subtree labels, one for each object/vertex:
® the structural constraint on object assignment is enforced
® the quantitative constraint on capacity is neglected

® for the VRP, a string of vehicle labels, one for each node (but capacity is
neglected and decoding the circuit for each vehicle is an NP-complete problem)

® the solutions of the TSP, the KP, the SCP are not partitions
8/13

Encodings: permutations of a set

A common encoding is given by the permutations of a set
® if the solutions are permutations, this is the natural encoding
(TSP solutions are subsets of arcs, but also permutations of nodes)
® if the solutions are partitions and the objective is additive on the
subsets, the order-first split-second method transforms permutations

into partitions
(but solutions and encodings do not correspond one-to-one!)

® if the problem admits a constructive algorithm that at each step

@ chooses an element
@ chooses how to add it to the solution (if many ways exist)

we can feed elements to the algorithm following the permutation
(depending on step 2, some solutions could have no encoding)

9/13

At each generation g a new population =(&) is built extracting
n, = |=(@)| individuals from the current population =(&=1)

=(&) := Selection (=6 ~V);
The extraction follows two fundamental criteria
@ an individual can be extracted more than once
@® better individuals are extracted with higher probability
(&) >p(&) = me > 7o

where the fitness ¢ (£) is a measure of the quality of individual &

® for a maximisation problem, commonly

® for a minimisation problem, commonly

¢ (&) = UB—f(x(¢))
where UB > f* is a suitable upper bound on the optimum

10/13

Proportional selection

The original scheme proposed by Holland (1975) assumed a
probability proportional to fitness
e - a9
> e (8)

fe=

This is named roulette-wheel selection or spinning wheel selection:

® given the fitness for § € = (i =1,...,np)
i—1 i

® build the intervals I'; = (Z e D 7r5,} in O (np) time
k=1~ k=1

® extract a random number r € U (0; 1]

® choose individual i* such that r € [';- in O (log np) time each

1=0.6+0.4
0.12
#(‘“F?AI’
&y
nﬁ-]i com gt 03=0.1240.18
B
\%‘_ -
.6=0.3+0. Ver. n n m
0.6=0.3+0.3 Overall O (nplog np) time

11/13

Rank selection

The proportional selection suffers from

® stagnation: in the long term, all individuals tend to have a good
fitness, and therefore similar selection probabilities

® premature convergence: if the best individuals are bad and the other
ones very bad, the selection quickly generates a bad population

To overcome these limitations, one should at the same time
® assign different probabilities to the individuals
® |imit the difference of probability among the individuals

The rank selection method
® sorts the individuals by nondecreasing fitness

=@ = {&,...,&,} with o, <. < g,

® assigns to the k-th individual a probability equal to

k 2k
T = ip =
gk e ko np (np—1)

It can be done in O (n, log n,) time as in the previous case
12/13

Tournament selection

An efficient compromise consists in
® extracting n, random subsets =;,...,=, of size «
® selecting the best individual from each subset

fk::arg?a_xcp(f) k=1,...,np

SS9
in time O (nya)
Parameter « tunes the strength of the selection:

® o = n, favours the best individuals

® o = 2 leaves chances to the bad individuals

All selection procedures admit an elitist variant, which
includes in the new population the best individual of the current one

(always keep the best individual found so far)

13/13

