Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone
DI - Universita degli Studi di Milano

Schedule: Wednesday 13.30 - 16.30 in classroom Alfa
Thursday 09.30 - 12.30 in classroom Alfa

Office hours: on appointment

E-mail: roberto.cordone@unimi.it
Web page: https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
Ariel site: https://myariel.unimi.it/course/view.php?id=7439
Lesson 18: VND and DLS Milano, A.A. 2025/26}
1/14

https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
https://myariel.unimi.it/course/view.php?id=7439

Extending the local search without worsening

Instead of repeating the local search, extend it beyond the local optimum

To avoid worsening solutions, the selection step must be modified

X = in f(x
xim iy ()

and two main strategies allow to do that
® the Variable Neighbourhood Descent (VND)
changes the neighbourhood N
® it guarantees an evolution with no cycles (the objective improves)
® it terminates when all neighbourhoods have been exploited
® the Dynamic Local Search (DLS) changes the objective function f
(X is better than x for the new objective, possibly worse for the old)

® it can be trapped in loops (the new objective changes over time)
® it can proceed indefinitely

2/14

Variable Neighbourhood Descent (VND)

The Variable Neighbourhood Descent of Hansen and Mladenovi¢ (1997)
exploits the fact that a solution is locally optimal for a specific neighbourhood

® a local optimum can be improved using a different neighbourhood

Given a family of neighbourhoods Ny, ..., Ns.,
@ sets:=1
@ apply a steepest descent exchange heuristic
and find a local optimum X with respect to Ns
© flag all neighbourhoods for which X is locally optimal and update s

@ if X is a local optimum for all Ns, terminate; otherwise, go back to point 2

Algorithm VariableNeighbourhoodDescent(/, x(%))
flag, := false Vk;
%= x9; x* = x@; s .= 1;
While s : flag, = false do

X := SteepestDescent(X, s); { possibly truncated }

flag, := true;

IfFf(x) < f(x")

then x* := %; flagys := false Vs’ # s;

s := Update(s, flag);
EndWhile;
Return (x*, f (x*));

3/14

Anticipated termination of Steepest Descent

Using many neighbourhoods means that some might be
® rather large

® slow to explore

In order to increase the efficiency of the method one can
® adopt a first-best strategy in the larger neighbourhoods

® terminate the Steepest Descent before reaching a local optimum
(possibly even after a single step)

Larger neighbourhoods mainly aim to move out of the basins of attraction
of smaller neighbourhoods

4/14

VND and VNS

There is of course a strict relation between VND and VNS
(in fact, they were proposed in the same paper)

The fundamental differences are that in the basic VND

® at each step the current solution is the best known one

the neighbourhoods are explored,
instead of being used to extract random solutions

They are never huge

the neighbourhoods do not necessarily form a hierarchy
The update of s is not always an increment
® when a local optimum for each N, has been reached, terminate

VIND is deterministic and would not find anything else

5/14

Neighbourhood update strategies for the VND

There are two main classes of VND methods
® methods with heterogeneous neighbourhoods

® exploit the potential of topologically different neighbourhoods
(e.g., exchange vertices instead of edges)

Consequently, s periodically scans the values from 1 to sit
(possibly randomly permuting the sequence at each repetition)
® methods with hierarchical neighbourhoods (N C ... C N,,)

® fully exploit the small and fast neighbourhoods
® resort to the large and slow ones only to get out of local optima
(usually terminating SteepestDescent prematurely)

Consequently, the update of s works as in the VNS

® when no improvements can be found in N, increase s
® when improvements can be found in /s, decrease s back to 1

Terminate when the current solution is a local optimum for all N
® in the heterogeneous case, terminate when all fail

® in the hierarchical case, terminate when the largest fails

6/14

Example: the CMSTP

This instance of CMSTP has n = 9 vertices, uniform weights (w, = 1),
capacity W =5 and the reported costs (the missing edges have ¢, > 3)

NS B |

The first solution is locally optimal for Ns, (single-edge swaps):
® swapping any edge in the left branch increases the total cost
® swapping any edge in the right branch

® with an edge linking to the left one makes the solution unfeasible
® with an edge linking to the root increases the total cost

Neighbourhood N, (single-vertex transfers) has an improving solution,
obtained moving vertex 5 from the left branch to the right one

7/14

Dynamic Local Search (DLS)

The Dynamic Local Search is also known as Guided Local Search

Its approach is complementary to VND
® it keeps the starting neighbourhood
® it modifies the objective function
It is often used when the objective is useless because it has wide plateaus

The basic idea is to
® define a penalty function w : X = N

® build an auxiliary function f (f (x), w (x))
which combines the objective function f with the penalty w

® apply a steepest descent exchange heuristic to optimise f

® at each iteration update the penalty w based on the results

The penalty is adaptive in order to move away from recent local optima
but this introduces the risk of cycling

8/14

General scheme of the DLS

Algorithm DynamicLocalSearch(/, x(?))

w := StartingPenalty(/);

3= x0: x* .= x(0.

While Stop() = false do
(x, xr) := SteepestDescent(x, f, w); { possibly truncated }
If f (x¢) < f(x*) then x™ := xf;
w := UpdatePenalty(w, X, x™);

EndWhile;

Return (x*, f (x™));

Notice that the steepest descent heuristic
® optimises a combination fof fand w
® returns two solutions:

@ a final solution X, locally optimal with respect to f, to update w
@ a solution x¢, that is the best it has found with respect to f

9/14

The

penalty can be applied (for example)
additively to the elements of the solution:

f(x):f(x)+Zw,-

multiplicatively to components of the objective f (x) = > ¢; (x):
J
Fl) =2 w ¢ (x)
J

penalty can be updated

at each single neighbourhood exploration

when a local optimum for f is reached

when the best known solution x* is unchanged for a long time
penalty can be modified with

random updates: “noisy” perturbation of the costs

memory-based updates, favouring the most frequent elements
(intensification) or the less frequent ones (diversification)

10/14

Example: DLS for the MCP

Given a undirected graph, find a maximum cardinality clique
® the exchange heuristic is a VND using the neighbourhoods
@ N, (vertex addition): the solution always improves,
but the neighbourhood is very small and often empty
@ Ns, (exchange of an internal vertex with an external one):
the neighbourhood is larger, but forms a plateau (uniform objective)

the objective provides no useful direction in either neighbourhood

associate to each vertex i a penalty w; initially equal to zero

the exchange heuristic minimises the total penalty
(within the neighbourhood!)
update the penalty
@ when the exploration of Ns, terminates:
the penalty of the current clique vertices increases by 1
@ after a given number of explorations:
all the nonzero penalties decrease by 1

The rationale of the method consists in aiming to
® expel the internal vertices (diversification)
® in particular, the oldest internal vertices (memory)

11/14

Example: DLS for the MCP

Start from x(© = {B, C,D}, with w=[011100000]

O w({B,C,E}) =w({A,B,D}) =2, but {A, B, D} wins lexicographically:
x = (A B,D} withw=[121200000]

® x® ={B,C,D} withw=[132300000] is the only neighbour
(3] W({B,C,E})=5<7=W({A7B,D})I
x® ={B C,E} withw=[143310000]
0 w({C,E,F})=4<10=w({B,C,D}):
xW = {C,E,F} withw=[144321000]
@ w({E,F,G})=3<11=w({B,C,E}):
x® = {E F,G} withw=[144332100]
0 w({F,G H})=w({F,G,1})=3<9=w({C E F}):
x® = {F,G,H} withw=[144333210]
Now the neighbourhood Nj, is not empty: x7 = {F,G,H, 1}

12/14

Example: DLS for the MAX-SAT

Given m logical disjunctions depending on n logical variables, find
a truth assignment satisfying the maximum number of clauses

® neighbourhood Nf, (1-flip) is generated complementing a variable

® associate to each logical clause a penalty wj; initially equal to 1
(each component is a satisfied formula)

® the exchange heuristic maximizes the weight of satisfied clauses
thus modifying their number with the multiplicative penalty

® the penalty is updated
@ increasing the weight of unsatisfied clauses to favour them

wj := ans w; for each j € U(x) (with ays > 1)

when a local optimum is reached
@ reducing the penalty towards 1

wj:=(1—p) wj+p-1foreachje C (with p€ (0,1))

with a certain probability or after a certain number of updates

13/14

Example: DLS for the MAX-SAT

The rationale of the method consists in aiming to
® satisfy the currently unsatisfied clauses (diversification)

® in particular, those which have been unsatisfied for longer time and
more recently (memory)

The parameters tune intensification and diversification

® small values of a5 and p preserve the current penalty
(intensification)

® |arge values of ays push away from the current solution
(diversification)

® large values of p push towards the local optimum of the current
attraction basin (a different kind of intensification)

14/14

