

Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: **Wednesday 13.30 - 16.30 in classroom Alfa**

Thursday 09.30 - 12.30 in classroom Alfa

Office hours: **on appointment**

E-mail: **roberto.cordone@unimi.it**

Web page: **<https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html>**

Ariel site: **<https://myariel.unimi.it/course/view.php?id=7439>**

Complexity

```
Algorithm SteepestDescent( $I, x^{(0)}$ )
   $x := x^{(0)}$ ;
  Stop := false;
  While Stop = false do
    {  $t_{\max}$  iterations }
     $\tilde{x} := \arg \min_{x' \in N(x)} f(x)$ ;
    If  $f(\tilde{x}) \geq f(x)$  then Stop := true; else  $x := \tilde{x}$ ;
  EndWhile;
  Return  $(x, f(x))$ ;
```

The complexity of the *steepest descent* heuristic depends on

- ① the number of iterations t_{\max} from $x^{(0)}$ to the local optimum found, which depends on the structure of the search graph (width of the attraction basins) and is hard to estimate *a priori*
- ② the search for the best solution in the neighbourhood (\tilde{x}), which depends on how the search itself is performed, but whose complexity estimation is usually standard

The exploration of the neighbourhood

Two strategies to explore the neighbourhood are possible

- ① **exhaustive search:** evaluate all the neighbour solutions;
the complexity of a single step is the product of
 - the **number of neighbour solutions** ($|N(x)|$)
 - the **evaluation of the cost of each solution** ($\gamma_f(|B|, x)$)

If it is not possible to generate only feasible solution:

- visit a **superset of the neighbourhood** ($\tilde{N}(x) \supset N(x)$)
- for each element x , **evaluate the feasibility** ($\gamma_x(|B|, x)$)
- for the feasible ones, evaluate the cost ($\gamma_f(|B|, x)$)

- ② **efficient exploration of the neighbourhood** without a complete visit:
find the best neighbour solution solving an auxiliary problem

Only some special neighbourhoods allow that

Exhaustive visit of the neighbourhood

```
Algorithm SteepestDescent( $I, x^{(0)}$ )
   $x := x^{(0)}$ ;
  Stop := false;
  While Stop = false do
     $\tilde{x} := x$ ;  $\{ \tilde{x} := \arg \min_{x' \in N(x)} f(x') \}$ 
    For each  $x' \in \tilde{N}(x)$  do
      If  $x' \in N(x)$  then
        If  $f(x') < f(\tilde{x})$  then  $\tilde{x} := x'$ ;
      EndIf;
    EndFor;
    If  $f(\tilde{x}) \geq f(x)$  then Stop := true; else  $x := \tilde{x}$ ;
  EndWhile;
  Return  $(x, f(x))$ ;
```

The complexity of the neighbourhood exploration combines three terms

- ① $|\tilde{N}(x)|$: the **number of subsets** visited
- ② γ_x : the **time to evaluate their feasibility**
- ③ γ_f : the **time to evaluate the objective for a feasible solution**

Evaluating or updating the objective: the additive case

The first way to accelerate an exchange algorithm is to minimize the time to evaluate the objective: in particular, it is faster to update $f(x)$ rather than to recompute it

The update of an additive objective $f(x) = \sum_{j \in x} \phi_j$ requires to

- sum ϕ_i for each element $i \in A$, added to x
- subtract ϕ_j for each element $j \in D$, deleted from x

$$\delta f(x, A, D) = f(x \cup A \setminus D) - f(x) = \sum_{i \in A} \phi_i - \sum_{j \in D} \phi_j$$

Examples: swap of objects (*KP*), columns (*SCP*), edges (*CMSTP*), ...

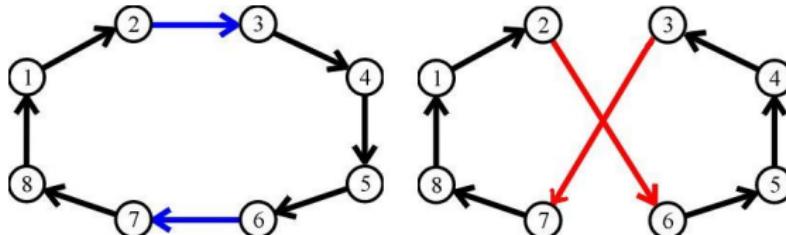
This update has two fundamental properties:

- it takes constant time for a constant number of elements $|A| + |D|$
- $\delta f(x, A, D)$ does not depend on x (we will talk about it later)

Example: the symmetric *TSP*

To generate neighbourhood $N_{\mathcal{R}_2}$ for the *TSP* we

- delete two nonconsecutive arcs (s_i, s_{i+1}) and (s_j, s_{j+1})
- add the two arcs (s_i, s_j) and (s_{i+1}, s_{j+1})
- revert the path (s_{i+1}, \dots, s_j) (modifying $O(n)$ arcs!)



If the graph and the cost function are symmetric, the variation of $f(x)$ is

$$\delta f(x, A, D) = c_{s_i, s_j} + c_{s_{i+1}, s_{j+1}} - c_{s_i, s_{i+1}} - c_{s_j, s_{j+1}}$$

but this is not true for the asymmetric *TSP*

What if the objective function is not additive?

Evaluating or updating the objective: the quadratic case

The *MDP* has a quadratic objective function: computing it costs $\Theta(n^2)$

Moving from x to $x' = x \setminus \{i\} \cup \{j\}$ (neighbourhood N_{S_1}), the update is

$$\delta f(x, i, j) = f(x \setminus \{i\} \cup \{j\}) - f(x) = \sum_{h, k \in x \setminus \{i\} \cup \{j\}} d_{hk} - \sum_{h, k \in x} d_{hk}$$

which depends on $O(n)$ distance terms, related to points i and j

There is a general trick for the symmetric quadratic functions with $d_{ii} = 0$

$$\begin{aligned} \delta f(x, i, j) &= \sum_{h \in x \setminus \{i\} \cup \{j\}} \sum_{k \in x \setminus \{i\} \cup \{j\}} d_{hk} - \sum_{h \in x} \sum_{k \in x} d_{hk} \Rightarrow \\ \Rightarrow \delta f(x, i, j) &= 2 \sum_{k \in x} d_{jk} - 2 \sum_{k \in x} d_{ik} - 2d_{ij} = 2(D_j(x) - D_i(x) - d_{ij}) \end{aligned}$$

If $D_\ell(x) = \sum_{k \in x} d_{\ell k}$ is known for each $\ell \in B$, the computation takes $O(1)$

Example: the *MDP*

x $B \setminus x$

Let us consider $f(x)/2$

Evaluate the exchange

$$x \rightarrow x' = x \setminus \{i\} \cup \{j\}$$

with $i \in x$ and $j \in B \setminus x$

$$f(x') = f(x) - D_i + D_j - d_{ij}$$

- the pairs including i are lost
- the pairs including j are acquired
- but the pair (i, j) is in excess

The cost is computed in $O(1)$ time for each solution

Example: the *MDP*

x $B \setminus x$

Let us consider $f(x)/2$

Evaluate the exchange

$$x \rightarrow x' = x \setminus \{i\} \cup \{j\}$$

with $i \in x$ and $j \in B \setminus x$

$$f(x') = f(x) - D_i + D_j - d_{ij}$$

- the pairs including i are lost
- the pairs including j are acquired
- but the pair (i, j) is in excess

The cost is computed in $O(1)$ time for each solution

Example: the *MDP*

x $B \setminus x$

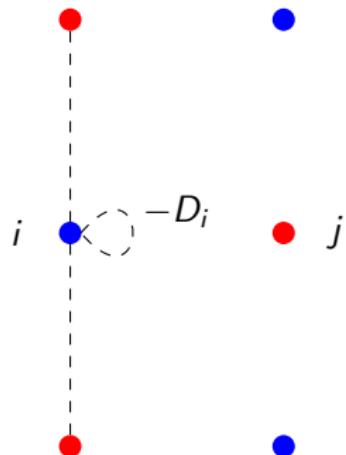
Let us consider $f(x)/2$

Evaluate the exchange

$$x \rightarrow x' = x \setminus \{i\} \cup \{j\}$$

with $i \in x$ and $j \in B \setminus x$

$$f(x') = f(x) - D_i + D_j - d_{ij}$$



- the pairs including i are lost
- the pairs including j are acquired
- but the pair (i, j) is in excess

The cost is computed in $O(1)$ time for each solution

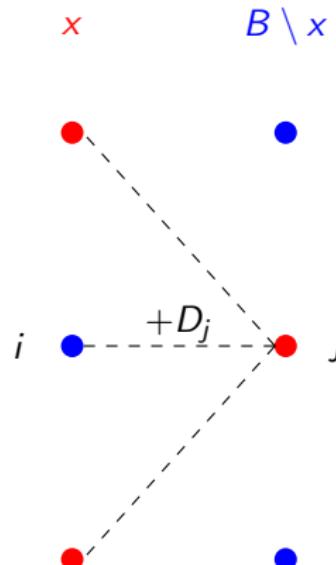
Example: the *MDP*

Let us consider $f(x)/2$
Evaluate the exchange

$$x \rightarrow x' = x \setminus \{i\} \cup \{j\}$$

with $i \in x$ and $j \in B \setminus x$

$$f(x') = f(x) - D_i + D_j - d_{ij}$$



- the pairs including i are lost
- the pairs including j are acquired
- but the pair (i, j) is in excess

The cost is computed in $O(1)$ time for each solution

Example: the *MDP*

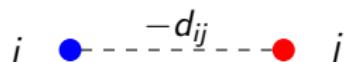
x $B \setminus x$

Let us consider $f(x)/2$

Evaluate the exchange

$$x \rightarrow x' = x \setminus \{i\} \cup \{j\}$$

with $i \in x$ and $j \in B \setminus x$



$$f(x') = f(x) - D_i + D_j - d_{ij}$$

- the pairs including i are lost
- the pairs including j are acquired
- but the pair (i, j) is in excess

The cost is computed in $O(1)$ time for each solution

Example: the *MDP*

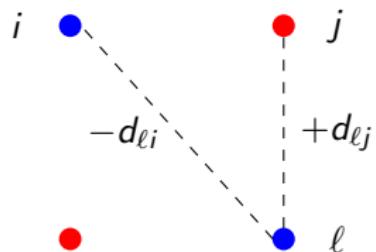
x $B \setminus x$

Update of the data structures:

- $D_\ell = D_\ell - d_{\ell i} + d_{\ell j}, \ell \in B$

For each element $\ell \in B$

- $d_{\ell i}$ disappears
- $d_{\ell j}$ appears



The auxiliary data structure is updated in $O(n)$ time for each iteration

Example: the *MDP*

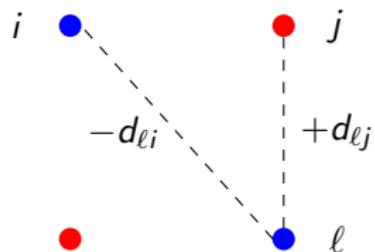
x $B \setminus x$

Update of the data structures:

- $D_\ell = D_\ell - d_{\ell i} + d_{\ell j}, \ell \in B$

For each element $\ell \in B$

- $d_{\ell i}$ disappears
- $d_{\ell j}$ appears



The auxiliary data structure is updated in $O(n)$ time for each iteration

Example: the *MDP*

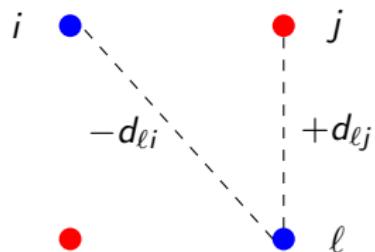
x $B \setminus x$

Update of the data structures:

- $D_\ell = D_\ell - d_{\ell i} + d_{\ell j}, \ell \in B$

For each element $\ell \in B$

- $d_{\ell i}$ disappears
- $d_{\ell j}$ appears



The auxiliary data structure is updated in $O(n)$ time for each iteration

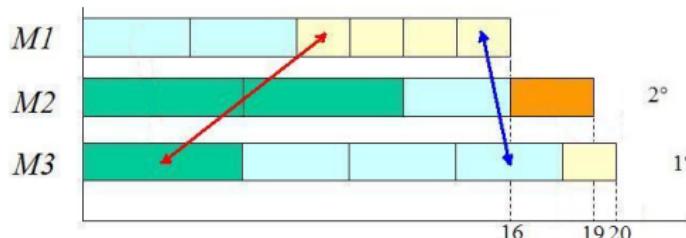
Updating the objective function: nonlinear examples

Many nonlinear functions can be updated with similar tricks

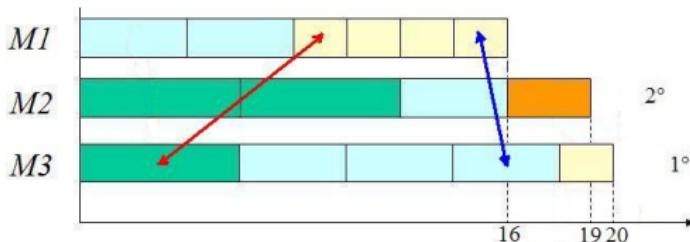
- save aggregated information on the current solution $x^{(t)}$
- use it to compute $f(x')$ efficiently for each $x' \in N(x^{(t)})$
- update it when moving to the following solution $x^{(t+1)}$

Using the transfer (N_{T_1}) and swap (N_{S_1}) neighbourhoods for the *PMSP*, the objective can be updated in constant time by managing

- ① the completion time for each machine
- ② the indices of the machines with the first and second maximum time



Example: the *PMSP*



Consider the swap $o = (i, j)$ of tasks i and j
(i on machine M_i , j on machine M_j)

- compute in constant time the new completion times:
one increases, the other decreases (or both remain constant)
- test in constant time whether either exceeds the maximum
- if the maximum time decreases, test in constant time whether the other time or the second maximum time becomes the maximum

Once the neighbourhood is visited and the exchange selected, update

- the two modified completion times (each one in constant time)
- their positions in a max-heap (each one in time $O(\log |M|)$)

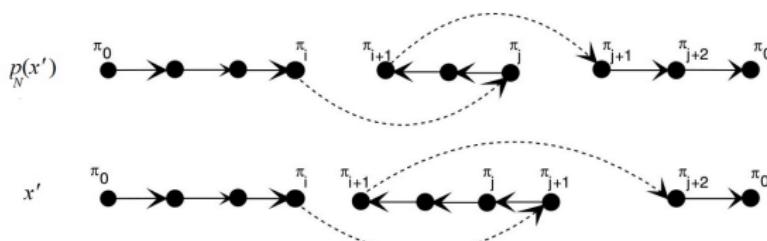
Use of local auxiliary information

The auxiliary information used to compute $f(x')$ can be

- global, that is referring to the current solution x
- local, that is referring to the solution $p_N(x')$ visited before x' in neighbourhood $N(x)$ according to a suitable order

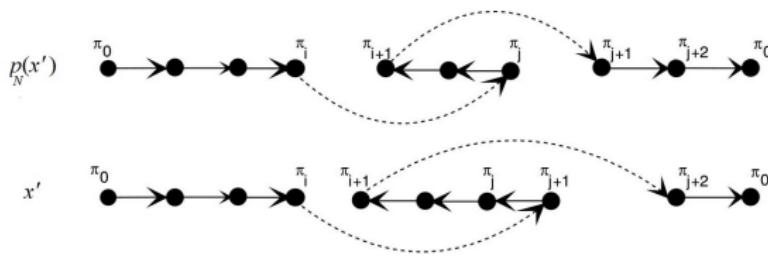
Consider the neighbourhood $N_{\mathcal{R}_2}$ for the asymmetric TSP:

- the neighbour solutions differ from x for $O(n)$ arcs
- general neighbour solutions differ from each other for $O(n)$ arcs
- if the pairs of arcs (s_i, s_{i+1}) and (s_j, s_{j+1}) follow the lexicographic order, the reverted path changes only by one arc



Example: the asymmetric TSP

Let $p_N(x') = o_{s_i, s_j}(x)$ and $x' = o_{s_i, s_{j+1}}(x)$ be subsequent neighbours of x



The variation of the objective from x to $o_{s_i, s_j}(x)$ is

$$\delta f(x, i, j) = c_{s_i, s_j} + c_{s_{i+1}, s_{j+1}} - c_{s_i, s_{i+1}} - c_{s_j, s_{j+1}} + c_{s_j \dots s_{i+1}} - c_{s_{i+1} \dots s_j}$$

The variation of the objective from x to $o_{s_i, s_{j+1}}(x)$ is different, but

- the first four terms (single arcs) can be recomputed in constant time
- the last two terms (paths) can be updated in constant time

$$\begin{cases} c_{s_{j+1} \dots s_{i+1}} = c_{s_j \dots s_{i+1}} + c_{s_{j+1}, s_j} \\ c_{s_{i+1} \dots s_{j+1}} = c_{s_{i+1} \dots s_j} + c_{s_j, s_{j+1}} \end{cases}$$

Is it acceptable to explore the neighbourhood in a predefined order?

What about feasibility?

Defining neighbourhoods with the Hamming distance or with operations can generate also unfeasible subsets, that must be removed

$$\tilde{N}_{H_k}(x) = \{x' \subseteq B : d(x', x) \leq k\} \supseteq N_{H_k}(x) = \tilde{N}_{H_k}(x) \cap X$$

$$\tilde{N}_{\mathcal{O}}(x) = \{x' \subseteq B : \exists o \in \mathcal{O} : o(x) = x'\} \supseteq N_{\mathcal{O}}(x) = \tilde{N}_{\mathcal{O}}(x) \cap X$$

(Examples: KP, BPP, SCP, CMSTP...)

If it is not possible to avoid *a priori* the unfeasible subsets, one must

- test the **feasibility** of each element of $\tilde{N}(x)$ to obtain $N(x)$
- for the feasible elements, evaluate the **cost**

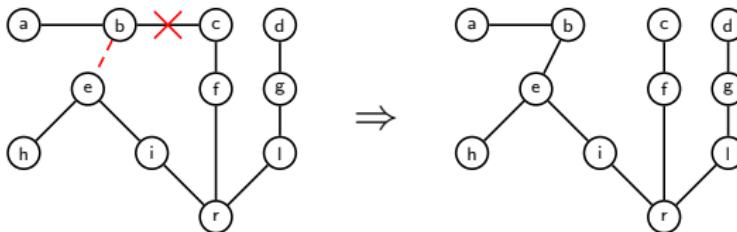
The feasibility test can be made efficient with techniques similar to the ones used for the objective evaluation

Example: update in constant time the total volume of a subset in the KP

Example: the *CMSTP*

Consider the swap neighbourhood N_{S_1} (add one edge, delete another)

- if the two edges are in the same branch, the solution remains feasible
- if they are in different branches, one loses weight, the other acquires it: **the variation is equal to the weight of the subtree transferred**



If each vertex saves the weight of its appended subtree, to test feasibility compare this weight with the residual capacity of the receiving branch
(the weight appended to *b* with the residual capacity of the left branch)

Once the best exchange is performed, the information must be updated in time $O(n)$ visiting the old ancestors from *c* and the new ones from *e*

A general scheme of sophisticated exploration

The use of auxiliary information requires

- ① the **inizialisation** of suitable data structures
 - partly **local**, i. e., related to neighbour solutions
 - partly **global**, i. e., related to the current solution
- ② their **update** between subsequent solutions or iterations

```
Algorithm SteepestDescent( $I, x^{(0)}$ )
 $x := x^{(0)}$ ; GI := InitialiseGI( $x$ ); Stop := false;
While Stop = false do
     $\tilde{x} := 0$ ;  $\tilde{\delta} := 0$ ; LI := InitialiseLI( $\tilde{x}$ )
    For each  $x' \in N(x)$  do
         $f(x') := \text{Estimate}(f(x), LI, GI)$ ;
        If  $f(x') < f(\tilde{x})$  then  $\tilde{x} := x'$ ;
        LI := UpdateLI(LI,  $x'$ )
    EndFor;
    If  $f(\tilde{x}) \geq f(x)$ 
        then Stop := true;
    else  $x := \tilde{x}$ ; GI := UpdateGI(GI,  $\tilde{x}$ )
    EndIf
EndWhile;
Return ( $x, f(x)$ );
```

Partial saving of the neighbourhood (1)

When performing an operation $o \in \mathcal{O}$ on a solution $x \in X$ sometimes

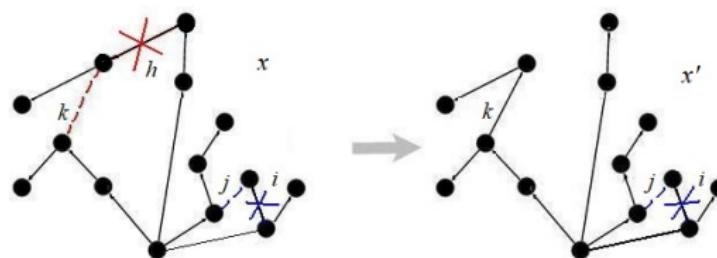
- the feasibility of the resulting solution $o(x)$
- the variation of the objective $\delta f_o(x) = f(o(x)) - f(x)$

depend only on a part of x (possibly, very small)

For example, consider the swap neighbourhood N_{S_1} for the CMST:

- add an edge $k \in B \setminus x$
- delete an edge $h \in x$

Two branches are involved: one acquires a subtree, the other loses it



The feasibility of swap (i, j) depends on the branches including i and j : it is the same in x and x' and is not affected by swap (h, k)

$$\delta f_{i,j}(x) = \delta f_{i,j}(x')$$

Partial saving of the neighbourhood (2)

For each operation $o \in \tilde{\mathcal{O}} \subset \mathcal{O}$ and for each $x' = o(x)$

- $o(x')$ is feasible if and only if $o(x)$ is feasible
- $\delta f_o(x') = \delta f_o(x)$

It is then advantageous to

- ① compute and save $\delta f_o(x)$ for every $o \in \mathcal{O}$, that is keep the set of feasible exchanges and their associated values δf
- ② perform the best operation o^* , and generate a new solution x'
- ③ retrieve $\delta f_o(x')$ for all $o \in \tilde{\mathcal{O}}$ (*their values are still correct*) and recompute and save $\delta f_o(x')$ only for $o \in \mathcal{O} \setminus \tilde{\mathcal{O}}$, that is recompute only the values of the exchanges on the modified branches
- ④ go back to point 2

If the branches are numerous, $|\mathcal{O} \setminus \tilde{\mathcal{O}}| \ll |\mathcal{O}|$ and the saving is very strong

It is typical of problems whose solution is a partition

Trade-off between efficiency and effectiveness

The complexity of an exchange heuristic depends on three factors

- ① number of iterations
- ② cardinality of the visited neighbourhood
- ③ computation of the feasibility and cost for the single neighbour

The first two factors are clearly conflicting:

- a small neighbourhood is fast to explore, but requires several steps to reach a local optimum
- a large neighbourhood requires few steps, but is slow to explore

The optimal trade-off is somewhere in the middle: **a neighbourhood**

- **large enough to include good solutions**
- **small enough to be explored quickly**

but it is hard to identify, because

- efficiency quickly worsens as size increases
- **the resulting solution also changes with the neighbourhood**
(large neighbourhoods have better local optima)

Fine tuning of the neighbourhoods

It is also possible to define a neighbourhood N and tune its size

- explore only a promising subneighbourhood $N' \subset N$

For example, if the objective function is additive, one can

- add only elements $j \in B \setminus x$ of low cost ϕ_j
- delete only elements $i \in x$ of high cost ϕ_i

- terminate the visit after finding a promising solution

For example, the **first-best strategy** stops the exploration at the first solution better than the current one

If $f(\tilde{x}) < f(x)$ then $x := \tilde{x}$; Stop := true;

The effectiveness depends on the objective

- if the cost of some elements influences very much the objective, it is worth taking it into account, fixing or forbidding them

and on the structure of the neighbourhood

- if the landscape is smooth, the first improving solution approximates well the best solution of the neighbourhood: it is better to stop
- if the landscape is rugged, the best solution of the neighbourhood could be much better: it is better to go on