
Heuristic Algorithms
Master’s Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: Wednesday 13.30 - 16.30 in classroom Alfa

Thursday 09.30 - 12.30 in classroom Alfa

Office hours: on appointment

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html

Ariel site: https://myariel.unimi.it/course/view.php?id=7439

Lesson 14: Exchange heuristics: complexity Milano, A.A. 2025/26
1 / 20

https://homes.di.unimi.it/cordone/courses/2026-ae/2026-ae.html
https://myariel.unimi.it/course/view.php?id=7439

Complexity

Algorithm SteepestDescent
(
I , x (0)

)
x := x (0);

Stop := false;

While Stop = false do { tmax iterations }
x̃ := arg min

x′∈N(x)
f (x);

If f (x̃) ≥ f (x) then Stop := true; else x := x̃ ;

EndWhile;

Return (x , f (x));

The complexity of the steepest descent heuristic depends on

1 the number of iterations tmax from x (0) to the local optimum found,
which depends on the structure of the search graph
(width of the attraction basins) and is hard to estimate a priori

2 the search for the best solution in the neighbourhood (x̃),
which depends on how the search itself is performed,
but whose complexity estimation is usually standard

2 / 20

The exploration of the neighbourhood

Two strategies to explore the neighbourhood are possible

1 exhaustive search: evaluate all the neighbour solutions;
the complexity of a single step is the product of

• the number of neighbour solutions (|N (x)|)
• the evaluation of the cost of each solution (γf (|B|, x))

If it is not possible to generate only feasible solution:
• visit a superset of the neighbourhood (Ñ (x) ⊃ N (x))
• for each element x , evaluate the feasibility (γX (|B|, x))
• for the feasible ones, evaluate the cost (γf (|B|, x))

2 efficient exploration of the neighbourhood without a complete visit:
find the best neighbour solution solving an auxiliary problem

Only some special neighbourhoods allow that

3 / 20

Exhaustive visit of the neighbourhood

Algorithm SteepestDescent
(
I , x(0)

)
x := x(0);

Stop := false;

While Stop = false do

x̃ := x ; { x̃ := arg min
x′∈N(x)

f (x ′) }

For each x ′ ∈ Ñ (x) do

If x ′ ∈ N (x) then

If f (x ′) < f (x̃) then x̃ := x ′;

EndIf;

EndFor;

If f (x̃) ≥ f (x) then Stop := true; else x := x̃ ;

EndWhile;

Return (x , f (x));

The complexity of the neighbourhood exploration combines three terms

1 |Ñ (x) |: the number of subsets visited

2 γX : the time to evaluate their feasibility

3 γf : the time to evaluate the objective for a feasible solution

4 / 20

Evaluating or updating the objective: the additive case

The first way to accelerate an exchange algorithm is to
minimize the time to evaluate the objective: in particular,
it is faster to update f (x) rather than to recompute it

The update of an additive objective f (x) =
∑
j∈x

ϕj requires to

• sum ϕi for each element i ∈ A, added to x

• subtract ϕj for each element j ∈ D, deleted from x

δf (x ,A,D) = f (x ∪ A \ D)− f (x) =
∑
i∈A

ϕi −
∑
j∈D

ϕj

Examples: swap of objects (KP), columns (SCP), edges (CMSTP), . . .

This update has two fundamental properties:

• it takes constant time for a constant number of elements |A|+ |D|
• δf (x ,A,D) does not depend on x (we will talk about it later)

5 / 20

Example: the symmetric TSP

To generate neighbourhood NR2 for the TSP we

• delete two nonconsecutive arcs (si , si+1) and (sj , sj+1)

• add the two arcs (si , sj) and (si+1, sj+1)

• revert the path (si+1, . . . , sj) (modifying O (n) arcs!)

If the graph and the cost function are symmetric, the variation of f (x) is

δf (x ,A,D) = csi ,sj + csi+1,sj+1 − csi ,si+1 − csj ,sj+1

but this it not true for the asymmetric TSP

What if the objective function is not additive?

6 / 20

Evaluating or updating the objective: the quadratic case

The MDP has a quadratic objective function: computing it costs Θ
(
n2
)

Moving from x to x ′ = x \ {i} ∪ {j} (neighbourhood NS1), the update is

δf (x , i , j) = f (x \ {i} ∪ {j})− f (x) =
∑

h,k∈x\{i}∪{j}

dhk −
∑
h,k∈x

dhk

which depends on O (n) distance terms, related to points i and j

There is a general trick for the simmetric quadratic functions with dii = 0

δf (x , i , j) =
∑

h∈x\{i}∪{j}

∑
k∈x\{i}∪{j}

dhk −
∑
h∈x

∑
k∈x

dhk ⇒

⇒ δf (x , i , j) = 2
∑
k∈x

djk − 2
∑
k∈x

dik − 2dij = 2
(
Dj (x)− Di (x)− dij

)
If Dℓ (x) =

∑
k∈x

dℓk is known for each ℓ ∈ B, the computation takes O (1)

7 / 20

Example: the MDP

Let us consider f (x) /2
Evaluate the exchange

x → x ′ = x \ {i} ∪ {j}

with i ∈ x and j ∈ B \ x

f (x ′) = f (x)− Di + Dj − dij

• the pairs including i are lost

• the pairs including j are acquired

• but the pair (i , j) is in excess

i j

x B \ x

The cost is computed in O (1) time for each solution

8 / 20

Example: the MDP

Let us consider f (x) /2
Evaluate the exchange

x → x ′ = x \ {i} ∪ {j}

with i ∈ x and j ∈ B \ x

f (x ′) = f (x)− Di + Dj − dij

• the pairs including i are lost

• the pairs including j are acquired

• but the pair (i , j) is in excess

i j

x B \ x

The cost is computed in O (1) time for each solution

8 / 20

Example: the MDP

Let us consider f (x) /2
Evaluate the exchange

x → x ′ = x \ {i} ∪ {j}

with i ∈ x and j ∈ B \ x

f (x ′) = f (x)− Di + Dj − dij

• the pairs including i are lost

• the pairs including j are acquired

• but the pair (i , j) is in excess

i j

x B \ x

−Di

The cost is computed in O (1) time for each solution

8 / 20

Example: the MDP

Let us consider f (x) /2
Evaluate the exchange

x → x ′ = x \ {i} ∪ {j}

with i ∈ x and j ∈ B \ x

f (x ′) = f (x)− Di + Dj − dij

• the pairs including i are lost

• the pairs including j are acquired

• but the pair (i , j) is in excess

i j

x B \ x

+Dj

The cost is computed in O (1) time for each solution

8 / 20

Example: the MDP

Let us consider f (x) /2
Evaluate the exchange

x → x ′ = x \ {i} ∪ {j}

with i ∈ x and j ∈ B \ x

f (x ′) = f (x)− Di + Dj − dij

• the pairs including i are lost

• the pairs including j are acquired

• but the pair (i , j) is in excess

i j

x B \ x

−dij

The cost is computed in O (1) time for each solution

8 / 20

Example: the MDP

Update of the data structures:

• Dℓ = Dℓ − dℓi + dℓj , ℓ ∈ B

For each element ℓ ∈ B

• dℓi disappears

• dℓj appears

i j

x B \ x

ℓ

+dℓj−dℓi

The auxiliary data structure is updated in O (n) time for each iteration

9 / 20

Example: the MDP

Update of the data structures:

• Dℓ = Dℓ − dℓi + dℓj , ℓ ∈ B

For each element ℓ ∈ B

• dℓi disappears

• dℓj appears

i j

x B \ x

ℓ

+dℓj−dℓi

The auxiliary data structure is updated in O (n) time for each iteration

9 / 20

Example: the MDP

Update of the data structures:

• Dℓ = Dℓ − dℓi + dℓj , ℓ ∈ B

For each element ℓ ∈ B

• dℓi disappears

• dℓj appears

i j

x B \ x

ℓ

+dℓj−dℓi

The auxiliary data structure is updated in O (n) time for each iteration

9 / 20

Updating the objective function: nonlinear examples

Many nonlinear functions can be updated with similar tricks

• save aggregated information on the current solution x (t)

• use it to compute f (x ′) efficiently for each x ′ ∈ N
(
x (t)

)
• update it when moving to the following solution x (t+1)

Using the transfer (NT1) and swap (NS1) neighbourhoods for the PMSP,
the objective can be updated in constant time by managing

1 the completion time for each machine

2 the indices of the machines with the first and second maximum time

10 / 20

Example: the PMSP

Consider the swap o = (i , j) of tasks i and j
(i on machine Mi , j on machine Mj)

• compute in constant time the new completion times:
one increases, the other decreases (or both remain constant)

• test in constant time whether either exceeds the maximum

• if the maximum time decreases, test in constant time whether the
other time or the second maximum time becomes the maximum

Once the neighbourhood is visited and the exchange selected, update

• the two modified completion times (each one in constant time)

• their positions in a max-heap (each one in time O (log |M|))

11 / 20

Use of local auxiliary information

The auxiliary information used to compute f (x ′) can be

• global, that is referring to the current solution x

• local, that is referring to the solution pN (x ′) visited before x ′

in neighbourhood N (x) according to a suitable order

Consider the neighbourhood NR2 for the asymmetric TSP:

• the neighbour solutions differ from x for O (n) arcs

• general neighbour solutions differ from each other for O (n) arcs

• if the pairs of arcs (si , si+1) and (sj , sj+1) follow the lexicographic
order, the reverted path changes only by one arc

12 / 20

Example: the asymmetric TSP
Let pN(x

′) = osi ,sj (x) and x ′ = osi ,sj+1(x) be subsequent neighbours of x

The variation of the objective from x to osi ,sj (x) is

δf (x , i , j) = csi ,sj + csi+1,sj+1 − csi ,si+1 − csj ,sj+1 + csj ...si+1 − csi+1...sj

The variation of the objective from x to osi ,sj+1(x) is different, but

• the first four terms (single arcs) can be recomputed in constant time

• the last two terms (paths) can be updated in constant time{
csj+1...si+1 = csj ...si+1 + csj+1,sj

csi+1...sj+1 = csi+1...sj + csj ,sj+1

Is it acceptable to explore the neighbourhood in a predefined order ?
13 / 20

What about feasibility?

Defining neighbourhoods with the Hamming distance or with operations
can generate also unfeasible subsets, that must be removed

ÑHk
(x) = {x ′ ⊆ B : d (x ′, x) ≤ k} ⊇ NHk

(x) = ÑHk
(x) ∩ X

ÑO (x) = {x ′ ⊆ B : ∃o ∈ O : o (x) = x ′} ⊇ NO (x) = ÑO (x) ∩ X

(Examples: KP, BPP, SCP, CMSTP. . .)

If it is not possible to avoid a priori the unfeasible subsets, one must

• test the feasibility of each element of Ñ (x) to obtain N (x)

• for the feasible elements, evaluate the cost

The feasibility test can be made efficient with techniques similar to the
ones used for the objective evaluation

Example: update in constant time the total volume of a subset in the KP

14 / 20

Example: the CMSTP

Consider the swap neighbourhood NS1 (add one edge, delete another)

• if the two edges are in the same branch, the solution remains feasible

• if they are in different branches, one loses weight, the other acquires
it: the variation is equal to the weight of the subtree transferred

a b c d

e f g

h i l

r

⇒

a b c d

e f g

h i l

r

If each vertex saves the weight of its appended subtree, to test feasibility
compare this weight with the residual capacity of the receiving branch
(the weight appended to b with the residual capacity of the left branch)

Once the best exchange is performed, the information must be updated
in time O (n) visiting the old ancestors from c and the new ones from e

15 / 20

A general scheme of sophisticated exploration
The use of auxiliary information requires

1 the inizialisation of suitable data structures
• partly local, i. e., related to neighbour solutions
• partly global, i. e., related to the current solution

2 their update between subsequent solutions or iterations

Algorithm SteepestDescent
(
I , x(0)

)
x := x(0); GI := InitialiseGI(x); Stop := false;

While Stop = false do

x̃ := 0; δ̃ := 0; LI := InitialiseLI(x̃)

For each x ′ ∈ N (x) do

f (x ′) := Estimate(f (x) , LI ,GI);

If f (x ′) < f (x̃) then x̃ := x ′;

LI := UpdateLI(LI , x ′)

EndFor;

If f (x̃) ≥ f (x)

then Stop := true;

else x := x̃ ; GI := UpdateGI(GI , x̃)

EndIf

EndWhile;

Return (x , f (x));
16 / 20

Partial saving of the neighbourhood (1)
When performing an operation o ∈ O on a solution x ∈ X sometimes

• the feasibility of the resulting solution o (x)
• the variation of the objective δfo (x) = f (o(x))− f (x)

depend only on a part of x (possibly, very small)

For example, consider the swap neighbourhood NS1 for the CMST:
• add an edge k ∈ B \ x
• delete an edge h ∈ x

Two branches are involved: one acquires a subtree, the other loses it

The feasibility of swap (i , j) depends on the branches including i and j :
it is the same in x and x ′ and is not affected by swap (h, k)

δfi,j (x) = δfi,j (x
′)

17 / 20

Partial saving of the neighbourhood (2)

For each operation o ∈ Õ ⊂ O and for each x ′ = o (x)

• o (x ′) is feasible if and only if o (x) is feasible

• δfo (x
′) = δfo (x)

It is then advantageous to

1 compute and save δfo (x) for every o ∈ O, that is
keep the set of feasible exchanges and their associated values δf

2 perform the best operation o∗, and generate a new solution x ′

3 retrieve δfo (x
′) for all o ∈ Õ (their values are still correct)

and recompute and save δfo (x
′) only for o ∈ O \ Õ, that is

recompute only the values of the exchanges on the modified branches

4 go back to point 2

If the branches are numerous,|O \ Õ| ≪ |O| and the saving is very strong

It is typical of problems whose solution is a partition

18 / 20

Trade-off between efficiency and effectiveness

The complexity of an exchange heuristic depends on three factors

1 number of iterations

2 cardinality of the visited neighbourhood

3 computation of the feasibility and cost for the single neighbour

The first two factors are clearly conflicting:

• a small neighbourhood is fast to explore, but requires several steps
to reach a local optimum

• a large neighbourhood requires few steps, but is slow to explore

The optimal trade-off is somewhere in the middle: a neighbourhood

• large enough to include good solutions

• small enough to be explored quickly

but it is hard to identify, because

• efficiency quickly worsens as size increases

• the resulting solution also changes with the neighbourhood
(large neighbourhoods have better local optima)

19 / 20

Fine tuning of the neighbourhoods

It is also possible to define a neighbourhood N and tune its size

• explore only a promising subneighbourhood N ′ ⊂ N
For example, if the objective function is additive, one can

• add only elements j ∈ B \ x of low cost ϕj

• delete only elements i ∈ x of high cost ϕi

• terminate the visit after finding a promising solution
For example, the first-best strategy stops the exploration at the first solution
better than the current one

If f (x̃) < f (x) then x := x̃ ; Stop := true;

The effectiveness depends on the objective

• if the cost of some elements influences very much the objective,
it is worth taking it into account, fixing of forbidding them

and on the structure of the neighbourhood

• if the landscape is smooth, the first improving solution approximates
well the best solution of the neighbourhood: it is better to stop

• if the landscape is rugged, the best solution of the neighbourhood
could be much better: it is better to go on

20 / 20

