
Università degli Studi di Milano

Heuristic algorithms

(laboratory sessions)

Roberto Cordone

– Academic year 2020/21 –

2

Contents

3 Constructive metaheuristics 5

3.1 Introduction . 5

3.2 Greedy Randomized Adaptive Search Procedure 6

3.2.1 Choice of the basic constructive heuristic 8

3.2.2 Pseudorandom number extraction 9

3.2.3 Biased point selection . 10

3.2.4 Empirical evaluation . 12

3.3 Ant System . 17

3

4 Contents

Chapter 3

Constructive metaheuristics

3.1 Introduction

This chapter discusses the application of constructive metaheuristics to the Max-
imum Diversity Problem (MDP). Constructive metaheuristic try to improve the
results of a basic constructive heuristic by running it repeatedly with the introduc-
tion of mechanisms that modify its final result. In the end, of course, the algorithm
returns the best of the solutions found during the process. The main mechanisms
used by metaheuristic algorithms to enhance a constructive heuristic are:

1. the use of different selection criteria, typical of multi-start algorithms;

2. the use of random choices, typical of GRASP ;

3. the use of memory, typical of the Ant System

In the following, we will implement GRASP and Ant System algorithms for the
MDP, based on the constructive heuristics discussed in the previous chapter1. In
the literature, these two approaches require the introduction of exchange procedures
to improve the solutions generated by the constructive mechanism. In order to focus
on the latter, however, we will avoid them.

Correspondingly, the main function allows to choose from the command line
which of the two algorithms to apply (with option -grasp for the GRASP and -as

for the Ant System) and to provide the numerical values of the following parameters:

� for the GRASP heuristic:

– the total number of iterations `

– the randomness parameter µ

� for the Ant System heuristic:

– the total number of iterations `

– the randomness parameter q

– the oblivion parameter ρ

plus the seed required to initialise the pseudorandom number generator.

The other operations (loading the data, allocating and deallocating the data
and the solution, determining the computational time and printing the results on

1Presently, the chapter only includes the GRASP algorithm.

5

6 3 Constructive metaheuristics

the screen) are the same as for the constructive heuristics, except for the fact that
also the parameters are printed, so that the report keeps trace of how each single
solution was obtained to help guarantee the reproducibility of the results2

parse_command_line (argc,argv,data_file,algo,&iterations,&mu,&q,&rho,&seed);

load_data(data_file,&I);

//print_data(&I);

create_solution(I.n,&x);

inizio = clock();

if (strcmp(algo,"-grasp") == 0)

grasp(&I,&x,iterations,mu,&seed);

else if (strcmp(algo,"-as") == 0)

ant_system(&I,&x,iterations,q,rho,&seed);

fine = clock();

tempo = (double) (fine - inizio) / CLOCKS_PER_SEC;

printf("%s ",data_file);

for (arg = 2; arg < argc; arg++)

printf("%s ",argv[arg]);

printf("%10.6lf ",tempo);

print_solution(&x);

printf("\n");

destroy_solution(&x);

destroy_data(&I);

3.2 Greedy Randomized Adaptive Search Proced-
ure

The Greedy Randomized Adaptive Search Procedure (GRASP) is a development of
the classical semigreedy algorithm, that we will actually implement. Its basic idea
is to modify the scheme of constructive algorithms by replacing the deterministic
choice of the element that provides the best value of the selection criterium

i∗ := arg min
i∈∆+(x)

ϕA (i, x)

with a stochastic choice i∗ (ω). This requires to define a probability distribution on
set ∆+(x), that should be biased so as to favour the best elements over the worst
ones:

ϕA (i, x) ≤ ϕA (j, x)⇔ πA (i, x) ≥ πA (j, x)

The following pseudocode provides the basic scheme of GRASP for maximisa-
tion problems, adapted to the specific application to the MDP by translating the
termination condition into a check on the cardinality of the current subset, by re-
turning the last visited subset (as it is the only feasible one) and by replacing the
search for a minimum cost solution with the search for a maximum value one. The
search procedure after each constructive phase is also neglected:

2Of course, the code could change and yield different results for the same parameter values,

3.2 Greedy Randomized Adaptive Search Procedure 7

Algorithm 1 GRASP

1: procedure GRASP(I, `, µ)
2: x∗ := ∅; f∗ := 0; . Best solution found so far
3: for l := 1 to ` do
4: x := ∅;
5: while |x| < k do . Randomised constructive procedure
6: ϕi :=

∑
j∈x dij for all i ∈ P \ x; . ϕi := (f(x ∪ {i})− f(x))/2

7: i∗ := BiasedRandomExtraction(P \ x, ϕ, µ);
8: x := x ∪ {i∗};
9: end while

10: if f(x) > f∗ then
11: x∗ := x; f∗ := f(x);
12: end if
13: end for
14: return (x∗, f∗);
15: end procedure

The algorithm performs ` iterations, where ` is a number chosen by the user,
based on the available time. It is easy to recognise in the inner while a modified
version of the basic constructive heuristic presented in the previous chapter. The
algorithm still computes all values of ϕA (i, x), but, instead of choosing the largest
one, it selects one at random based on a biased probability distribution (with para-
meter µ) that favours the largest ones. At the end of each iteration, the current
solution possibly updates the best known one.

The scheme is quite similar to the one used for the greedy “try-all” heuristic, as
it requires to create and iteratively fill and empty a current solution, while updating
the best known one, that will be returned in the end. We just replace the func-
tion best point to add(px,pI) used in the basic greedy heuristic, with a function
biased random point to add(px,pI,pseed,pmu) that performs the evaluation of
the selection criterium ϕA (i, x) based on the current solution x and on the instance
I, the extraction of a pseudorandom number depending on the seed and the biased
stochastic selection of a new point i to add based on the parameter mu provided by
the user.

create_solution(pI->n,&x);

for (iter = 1; iter <= iterations; iter++)

{

while (get_card(&x) < pI->k)

{

i = biased_random_point_to_add(&x,pI,mu,pseed);

add_point(i,&x,pI);

}

if (x.f > px->f) copy_solution(&x,px);

clean_solution(&x,pI->n);

}

destroy_solution(&x);

but this should no longer be the case when the implementation has reached a sufficiently stable
status.

8 3 Constructive metaheuristics

3.2.1 Choice of the basic constructive heuristic

In the previous chapter, we have considered four alternative (though very similar)
constructive heuristics, and a destructive one. we now discuss which of the heuristics
should be adopted as the core of the GRASP approach.

We will leave aside the destructive heuristic, because it is conceptually different
from the other ones, though it would indeed be interesting to compare the con-
structive and destructive approaches in a metaheuristic allowing to give them equal
time3. We will also exclude the try-all heuristic, that was the best-performing one,
but also the slowest, and in a sense it is already a sort of multi-start metaheuristic,
using the initial point as a parameter whose value changes at every iteration. Since
a metaheuristic is intrinsically less efficient than the basic heuristic on which it is
based, we prefer to choose a simple and fast mechanism, rather than a slow and
complex one, at least for a first experiment. There is always time to introduce
complications and refinements, if justified by theory or by experience.

The basic heuristic had a strong drawback: it could only generate solutions
including point 1. Is this drawback still present in a randomized version? The
answer depends on the probability distribution selected. We remind that at the
first step the selection criterium is equal to zero for all points. Therefore:

� a scheme based on a Heuristic Biased Stochastic Sampling (HBSS) would
choose any point, but it would assign larger probabilities to the first points;

� a scheme based on a Restricted Candidate List (RCL) would choose with
uniform probability one of the first points.

In the first case, all solutions can be obtained, but there is a bias towards those
including the points with small indices, and such a bias is not justified by any good
reason. In the second case, the points with larger indices could even be impossible to
reach for some instances (that depends also on the values of the distance function).
Since for the sake of simplicity, we are going to test only a RCL approach, the basic
greedy heuristic is not a good choice, unless with some additional correction.

The farthest-point and the farthest-pair heuristic still introduce a bias, or a
deterministic advantage, in favour of points with a large total distance, or pairs
of very distant points. Such a bias is less unreasonable, but still not provably
justified. Moreover, in the case of point pairs, since the number of possible distances
is not huge, several pairs of points could have the same distance, and therefore the
discrimination between them would end up being based on their indices, and that
would not be reasonable.

A very simple idea to avoid an index-based bias at the first iteration of the
procedure could be to select the first point at random with uniform probability. At
the following step4, the choice would be stochastically biased in favour of the point
that is farthest from a first one selected uniformly at random. That is similar to the
farthest-pair heuristic, but different in that at least one of the two indices would
be selected at random, without any index-based bias. For the sake of simplicity,
we will apply this idea. This means that when x is empty the procedure directly
selects one of the points with probability πi = 1/n without computing the selection
criterium (that would be trivially equal to zero for all points i ∈ P).

When x is not empty, we compute the selection criterium for all external points
and proceed to a biased random extraction from the available alternatives. Instead

3That’s for a future laboratory, but it could be a good exercise.
4The following discussion is unrevised brainstorming: I do not expect it to be very clear, or

even correct, but I think that the elements discussed are indeed relevant for the behaviour of the
algorithm.

3.2 Greedy Randomized Adaptive Search Procedure 9

of simply saving the maximum of these values, we save them progressively in a vector
phi and the corresponding points in a vector P, returning the final length num of the
two vectors, that corresponds to the number of possible extensions |∆+ (x)| = P \x5.

if (get_card(px) == 0)

i = get_point(rand_int(1,pI->n,pseed),pI);

else

{

P = point_alloc(pI->n+1);

phi = int_alloc(pI->n+1);

num = compute_selection_criterium(px,pI,P,phi);

i = biased_random_extraction(P,phi,num,mu,pseed);

free(P);

free(phi);

}

return i;

The selection criterium is still the value of the objective, that is

ϕA (i, x) = f (x ∪ {i}) =
∑

j∈x∪{i}

∑
k∈x∪{i}

djk

replaced for the sake of efficiency by half of its variation δf (x, i) = (f (x ∪ {i})− f (x)) /2

δf (x, i) =
∑
j∈x

dji

It is therefore computed with the function dist from x(i,px,pI) that was imple-
mented in the previous chapter.

cnt = 0;

for (i = first_point_out(px); !end_point_list(i,px); i = next_point(i,px))

{

cnt++;

P[cnt] = i;

phi[cnt] = dist_from_x(i,px,pI);

}

return cnt;

3.2.2 Pseudorandom number extraction

In order to generate random numbers, we exploit a classical pseudorandom number
generator (the ran1 generator described in the Numerical recipes in C). This is a
function that receives in input a seed, that is a negative integer number, modifies
that number (this is why the seed is passed by reference) and returns in output
a real number ω that tends to assume a uniform distribution in the range [0; 1]
as the function is repeatedly called. The first value of the seed is selected by the
user, fed to the algorithm in the command line and determines the overall sequence

5Strictly speaking, this value is therefore already known, so that it would not be necessary to
retrieve it from the computation.

10 3 Constructive metaheuristics

of numbers generated. This is why the numbers of the sequence are denoted as
pseudorandom. The ability to generate the same sequence in all runs is fundamental
for the repeatability of the approach and the reproducibility of the results. In short,
it is a basic condition for the scientific investigation of the problem.

3.2.3 Biased point selection

Given the pseudorandom number ω, it is necessary to determine the corresponding
point in ∆+ (x) = P \ x with a biased scheme that favours the points with larger
values of φi. This mechanism depends on the probability distribution adopted.
In the following, for the sake of simplicity, we will adopt a value-based Restricted
Candidate List (RCL scheme, in which:

1. a real parameter µ ∈ [0; 1] is used to fix an intermediate threshold ϕ̄(x, µ)
between the minimum and maximum values available for φi;

2. the points i such that φi is better than (i.e., above) the threshold enter the
RCL;

3. a point is selected from the RCL with uniform probability.

Other schemes commonly adopted in GRASP heuristics employ a cardinality-
based RCL, a linearly decreasing or an exponentially decreasing probability profile
on all external points. All of them assign decreasing probabilities to the possible
choices i ∈ ∆+(x) sorted by nondecreasing values of φ. In short, if ir is the ele-
ment in position r = 1, . . . , |∆+(x)| in the ranking, φ(i1, x) ≥ φ(i2, x) ≥ . . . ≥
φ(i|∆+(x)|, x). Moreover, the typical schemes adopted in GRASP heuristics define
probabilities based on the ranking of the choices, and not on the absolute values
of the selection criterium, that is φ(ir, x) can be expressed as a function of r and
|∆+(x)|.

Value-based RCL

This scheme computes an adaptive threshold depending on the values of the selec-
tion criterium on the available extension.

ϕ̄(x, µ) = (1− µ)ϕmin + µϕmax

where

ϕmin (x) = min
i∈∆+

A(x)
ϕA (i, x) and ϕmax (x) = max

i∈∆+
A(x)

ϕA (i, x)

and defines a RCL as

RCL(x, µ) = {i ∈ ∆+(x) : ϕ(i, x) ≥ ϕ̄(x, µ)}

Then, it assigns the elements keeping under the threshold a uniform probability,
and the following ones a zero probability:

πir =


1

|RCL(x, µ)|
if r ≤ |RCL(x, µ)|

0 if r > |RCL(x, µ)|

The parameter µ ∈ [0; 1] tunes the randomness of the choice, with µ = 0 yielding a
deterministic heuristic and µ = 1 a random walk.

3.2 Greedy Randomized Adaptive Search Procedure 11

In order to implement this scheme, the procedure biased random extraction

scans the vector phi a first time to determine its minimum and maximum values
ϕmin and ϕmax. Then, it computes the threshold based on parameter µ that dis-
criminates from the other points the elements of the RCL, according to condition6

ϕi ≥ (1− µ)ϕmax + µϕmin

Scanning again the RCL allows to determine the number of its elements and to
move them at the beginning of the vector of points P. For the sake of efficiency,
the points are copied overwriting the previous elements of the vector, because there
is no need to keep the whole original content: only the elements of the RCL are
necessary.

Identification of the selected point

Now, in order to extract one of them with uniform probability, it is enough to
compute dω |RCL(x, µ)|e and take the corresponding element of vector P. In RCL-
based schemes, it is enough to multiply ω by the size of the RCL and round up the
result. This provides the position of the point in the list, and therefore allows to
access it directly.

The other schemes mentioned above require to first translate the pseudorandom
number ω into a ranking position, and then to identify the point corresponding to
that position in a sorted vector. Let us focus on the first phase. It is always possible
to identify the ranking position that corresponds to ω by summing the probabilities
associated to the subsequent rankings, and stopping when the sum reaches ω: the
corresponding position is the required one. In practice, however, it is usually not
necessary to perform this sum explicitly, since the structure of the values allows to
compute the correct ranking more quickly, just as in the case of the RCL it was
enough to multiply ω by the size of the list7

After computing the ranking position, one must still identify the corresponding
point according to the order by nondecreasing values of φ. It is never required to
fully sort vector phi: the extraction of the k-th largest element from a vector can
in fact be performed in linear time applying suitable algorithms. We do not give
details here since we limit our experiments to the RCL scheme.

phiMin = INT_MAX;

phiMax = -1;

for (cnt = 1; cnt <= num; cnt++)

{

if (phi[cnt] < phiMin) phiMin = phi[cnt];

if (phi[cnt] > phiMax) phiMax = phi[cnt];

}

barphi = (1-mu) * phiMax + mu * phiMin;

RCLsize = 0;

for (cnt = 1; cnt <= num; cnt++)

6The condition is complementary to the one given in the slides, because the selection criterium
must be maximised, but µ still measures randomness.

7I need to work on this point, that is not clearly discussed in any paper or textbook at the best
of my knowledge. I am pretty sure that a linear probability profile allows to give a closed-form
quadratic expression of the cumulated probability in each ranking position r, and therefore to
find the position corresponding to ω in constant time solving a second-order equation. For the
exponential profile, something more sophisticated is required.

12 3 Constructive metaheuristics

if (phi[cnt] >= barphi)

{

RCLsize++;

P[RCLsize] = P[cnt]; /* overwriting P for the sake of efficiency */

}

cnt = rand_int(1,RCLsize,pseed);

return P[cnt];

3.2.4 Empirical evaluation

We can now evaluate the performance of the GRASP heuristic. Contrary to what
we have done in the previous chapter, having acquired a certain understanding of
what the heuristics are doing, we will try to avoid producing meaningless diagrams.

Computational time analysis

An a priori worst-case asymptotic analysis of the computational time can be based
on the similar analysis made for the basic deterministic greedy heuristic. First of
all, the constructive heuristic is run for a given number of iterations `. This number
is a relevant parameter, that could constant and totally unrelated to the size of
the problem, but could also be chosen depending on it, with the idea that larger
instances could require more iterations to be explored properly, or vice versa that
larger instances allow less iterations because thery require a longer time for each
run, and the overall time is limited. In general, therefore, the expression of the time
complexity will include `. The basic deterministic heuristic required time O(nk2) for
each run. The randomised version requires additional time for the generation of the
pseudorandom number (that can be assumed as constant), for the identification of
the minimum and maximum values of the selection criterium and the construction
of the RCL (that can be assumed as linear), for the biased random selection of the
new point (constant time). Consequently, we can estimate an additional linear time
per each of the k iterations of the constructive method: the resulting O (nk) term is
dominated asymptotically. Other additional terms are given by the comparison of
each of the ` solutions obtained with the best known one and, possibly, the update
of the latter. All these terms are asymptotically dominated, but they could have a
perceivable influence on the empirical evaluation.

For the first experiment, we set ` = n. The choice is clearly arbitrary, but
it is motivated by the idea to allow each of the n points to be chosen with a
reasonable probability as the starting point of the constructive heuristic. It also aims
to obtain a computational time comparable to that of the “try-all” heuristic, which
also had n repetitions of the basic constructive scheme. This should allow to better
estimate the impact of the additional operations required by the randomisation (not
the maintenance of the best known solution, that occurs also in the deterministic
heuristic).

Figure 3.1 reports the scaling diagram for the whole benchmark, obtained setting
µ = 0.1. It can be noticed, however, that according to the theoretical analysis
parameter µ should have very little influence on the computational time. The
detailed reports show a limited slow-down as µ increases, but the difference is not
significant. The diagram shows the expected increase of the computational time
with size, and its logarithmic version in Figure confirms its polynomiality. The
O
(
`nk2

)
theoretical estimate, with ` = n and k ∝ n, suggests an overall O

(
n4
)

3.2 Greedy Randomized Adaptive Search Procedure 13

complexity, that is confirmed by the linear interpolation:

TA = βnα ⇔ log TA = α log n+ log β

with α ≈ 3.969 and β ≈ 3.4 · 10−10.

Figure 3.1: Scaling diagram for the greedy algorithm on the benchmark

Figure 3.2: Scaling diagram in logarithmic scales for the greedy algorithm on the
benchmark

The two figures report also the scaling diagram of the greedy “try-all” heuristic,
that was expected to have a very similar performance with respect to the compu-
tational time. In fact, the two profiles are very similar, with the GRASP heuristic
only slightly higher, confirming that the additional operations to randomise the
selection of points affect very little the overall complexity.

Solution quality analysis

Without forgetting that the benchmark is rather small and specific, we can now draw
the SQD diagram (see Figure ??), to compare the different parameter tunings with
one another. We consider the following tunings: µ ∈ {0.01, 0.02, 0.03, 0.04, 0.05},
after some preliminary experiments showed that larger values provided worse res-
ults. The same diagram can be used to compare GRASP with the algorithms
already developed. In particular, the figure shows the profile of the “try-all” heur-
istic, that is the most similar one in terms of behaviour (applying a sequence of n
different constructive heuristics) and computational time. The diagram is not very
clear, but the versions with larger values of the randomness coefficient µ seem to
perform slightly worse (the trend becomes clearer for larger values). Indeed, the
performance of the “try-all” heuristic is similar to that of the smaller values of µ
and better than the other ones. This is rather disappointing, and poses the question

14 3 Constructive metaheuristics

whether the values tested are too large and should be reduced. In order to be sure,
one would need to check the typical length of the RCL during the search. A rough
estimate, based on the (unproved, but not unreasonable) assumption that the val-
ues of the selection criterium are uniformly distributed between ϕmin ϕmax is that
the typical size decreases from µn to µ (n− k). For µ = 0.01, n ranging from 100
to 1 000 and k ranging from 0.1n to 0.4n, this corresponds to sizes ranging from 1
to 9, that do not seem so large.

Figure 3.3: Solution Quality Distribution diagram for the GRASP algorithm (with
µ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}) and the greedy “try-all” heuristic

The boxplots reported in Figure 3.4 provide a similar, perhaps slightly clearer,
intuition. It should anyway be noticed that the GRASP heuristic can be prolonged
for more than ` = n iterations, probably improving the final results, whereas the
deterministic heuristic cannot. As well, we could experiment with shorter runs, to
determine whether the results obtained actually could require a lower number of
iterations. Anyway, the results remain unpromising.

Figure 3.4: Boxplots for the GRASP algorithm (with µ ∈ {0.1, 0.2, 0.3, 0.4}) and
the greedy “try-all’ heuristic’

Statistical tests We now apply Wilcoxon’s test to determine whether it can
discriminate between the results of different parameter tuning of GRASP and the
deterministic competitor. The results are:

� for µ = 0.01

W+ = 338.50, W- = 402.50, N = 38, p <= 0.6478

3.2 Greedy Randomized Adaptive Search Procedure 15

� for µ = 0.02

W+ = 430.50, W- = 310.50, N = 38, p <= 0.3882

� for µ = 0.03

W+ = 523.50, W- = 256.50, N = 39, p <= 0.06345

� for µ = 0.04

W+ = 455.50, W- = 324.50, N = 39, p <= 0.3644

� for µ = 0.05

W+ = 634.50, W- = 145.50, N = 39, p <= 0.0006617

In short, the difference, at first not statistically significant, tends to become more
significant as µ increases (with an exception for µ = 0.04. The only comparison that
seems to exhibit a true dominance is the one between the deterministic heuristic
and µ = 0.05. The message is clearly not to exceed with randomicity.

Influence of the random seed An aspect that must be analysed when using
random steps is the influence that randomness has on the final result obtained. If
we run the algorithm a single time, in fact, the quality of the results achieved could
be easily due to a lucky, or unlucky, choice of the random seed. In order to estimate
the role of randomness, we should run the algorithm for several times, with different
random seeds, and compare the results thus obtained. A simple index is given by
the average quality of the solution with respect to a sufficiently large number of runs
(at least 10, possibly more), but other indices of distribution are certainly relevant:
the maximum and minimum values obtained, or the medians and quartiles. The
description is very similar in principle to that we have given with respect to the
benchmark instances (numerical indices, boxplots, SQD diagrams), but it considers
single instances and variable seeds, instead of a single seed and random instances.

In order to give an idea of this kind of investigation, we select a single instance,
that we consider as significant for some reason, and we run the algorithm for a given
number of times with different seeds. We will consider the instance n0600k060,
because it is the instance on which the GRASP algorithm with µ = 0.01, that is the
best performing one on average (though with nonsignificant differences with other
ones) obtains the largest gap: δA (I) = 1.21% (see the maximum of the second
boxplot in Figure 3.4. The question investigated is whether this bad result was
typical or derived from a particularly unlucky, or particularly lucky, choice of the
random seed. In order to establish this, since the algorithm takes about 5 seconds
to solve the instances, we run it 100 times with different random seeds, ranging from
−1 to −100. Figure 3.5 provides the SQD with respect to the random seed. The gap
δ is never huge, but indeed it varies in a rather large range (between 0.6% and 1.4%).
The red line in the picture, that corresponds to the single run of the previous phase
of experiments, suggests that its result was indeed rather unlucky. This suggests
that the GRASP algorithm (at least on this instance) is rather unstable, that its
results could be in practice better (but also worse) than the ones discussed above,
that were obtained in a single (not necessarily representative) run, and that the
conclusions drawn from such results should be handled with much care.

16 3 Constructive metaheuristics

Figure 3.5: Solution Quality Distribution diagram for the GRASP algorithm with
µ = 0.01 on instance n0600k060 with 100 different random seeds: the red line
corresponds to the single run of the previous phase of experiments.

3.3 Ant System 17

3.3 Ant System

The Ant System (AS) is a development of the classical cost perturbation algorithm,
as well as of the semigreedy algorithm. Its basic idea is to modify the scheme of
constructive algorithms by replacing the deterministic choice of the element that
provides the best value of the selection criterium with a stochastic choice, influenced
by additional information provided by the memory of previously found solutions. In
addition, the AS considers a population of algorithms that work in parallel, iteration
by iteration. Among the several variants of AS, we are going to implement the one
that:

� defines the visibility of a point i ∈ P \ x as the selection criterium used in the
constructive and the GRASP heuristic, that is

η (i, x) = ϕ (i, x) =
∑
j∈x

dji

� maintains in a suitable vector a trail function τ (i) that depends only on the
point i to be added, and is progressively updated during the execution;

� combines visibility and trail by multiplying them, as they both tend to asso-
ciate larger values to better options;

� tunes the randomness of the choice with a parameter q, so that the choice is
made selecting with probability 1− q

i∗ = arg max
i∈P\x

ϕ (i, x) τ (i)

and with probability q a random point with probability distribution

φi =
ϕ (i, x) τ (i)∑

j∈P\x ϕ (j, x) τ (j)

� applies a local update to the trail to diversify the search after each individual
has built a solution;

� applies a global update to the trail to intensify the search on the points that
belong to the best known solution found in the whole process.

The following pseudocode provides the scheme of this variant of the AntSystem
adapted to the MDP as already done for GRASP. Also in this case the search
procedure that should be run to improve the solutions built is neglected:

The algorithm performs ` iterations, in each of which it generates h different
solutions; ` and h are numbers chosen by the user, based on the available time. It
is easy to recognise in the inner while a modified version of the basic constructive
heuristic presented in the previous chapter. The algorithm still computes all values
of ϕA (i, x), but, instead of choosing the largest one, it selects one at random based
on a biased probability distribution (with parameter µ) that favours the ones with
largest values of ϕ and τ . TALK ABOUT THE LOCAL TRAIL UPDATE At the
end of each iteration, the current solution possibly updates the best known one.
TALK ABOUT THE GLOBAL TRAIL UPDATE

τ = 1 PERCHE’ L’AGGIORNAMENTO E’ Q-f?

18 3 Constructive metaheuristics

Algorithm 2 AntSystem

1: procedure AntSystem(I, `, q, ρ)
2: x∗ := ∅; f∗ := 0; . Best solution found so far
3: τi = τ0 for all i ∈ P ;
4: for l := 1 to ` do
5: for g := 1 to h do
6: x := ∅;
7: while |x| < k do . Randomised constructive procedure
8: ϕi := f(x ∪ {i})− f(x) for all i ∈ P \ x;
9: i∗ := BiasedRandomExtraction(P \ x, ϕ, τ, µ);

10: x := x ∪ {i∗};
11: end while
12: if f(x) > f∗ then
13: x∗ := x; f∗ := f(x);
14: end if
15: τ := LocalTrailUpdate(x, τ, ρ);
16: end for
17: τ := GlobalTrailUpdate(x∗, τ, ρ);
18: end for
19: return (x∗, f∗);
20: end procedure

	Constructive metaheuristics
	Introduction
	Greedy Randomized Adaptive Search Procedure
	Choice of the basic constructive heuristic
	Pseudorandom number extraction
	Biased point selection
	Empirical evaluation

	Ant System

